return to list of programs

Next Generation UV Instrument Technologies Enabling Missions in Astrophysics, Cosmology and Planetary Sciences

Team Leads
Christopher Martin
Shouleh Nikzad
David Schiminovich

Our study sought to create a new paradigm in UV instrument design, detector technology, and optics that will form the technological foundation for a new generation of ultraviolet missions. This study brought together scientists and technologists representing the broad community of
astrophysicists, planetary and heliophysics physicists, and technologists working in the UV.

Next generation UV missions require major advances in UV instrument design, optics and detector technology. UV offers one of the few remaining areas of the electromagnetic spectrum where this is possible, by combining improvements in detector quantum efficiency (5-10x), optical coatings and higher-performance wide-field spectrometers (5-10x), and increasing
multiplex advantage (100-1000x).

At the same time, budgets for future missions are tightly constrained. Attention has begun to turn to small and moderate class missions to provide new observational capabilities on timescales that maintain scientific vitality. Developments in UV technology offer a comparatively unique opportunity to conceive of small (Explorer) and moderate (Probe, Discovery, New Millennium) class missions that offer breakthrough science.

Our study began with the science, reviewing the breakthrough science
questions that compel the development of new observational capabilities in the next 10-20 years. We invented a framework for highlighting the objectives of UV measurement capabilities: following the history of baryons from the intergalactic medium to stars and planets. In astrophysics, next generation space UV missions will detect and map faint emission and
tomographically map absorption from intergalactic medium baryons that delineate the structure of the Universe, map the circum-galactic medium that is the reservoir of galaxy-building gas, map the warm-hot ISM of our Galaxy, explore star-formation within the Local group and beyond, trace gas in proto-planetary disks and extended atmospheres of exoplanets, and record the transient UV universe. Solar system planetary atmospheric physics and chemistry, aurorae, surface composition and magnetospheric environments and interactions will be revealed using UV spectroscopy. UV spectroscopy may even detect life on an exoplanet.

For questions contact: Christopher Martin, Shouleh Nikzad, David Schiminovich or Michele Judd

Christopher Martin

Study Co-Lead Christopher Martin from Caltech.

Shouleh Nikzad

Study Co-Lead Shouleh Nikzad from JPL.

David Schiminovich

Study Co-Lead David Schiminovich from Columbia University.