Technical Development
study page

xTerramechanics: Integrated Simulation of Planetary Surface Missions

Caltech Campus PI: José Andrade
Caltech Campus Co-PI: Michael Lamb
JPL Co-PIs: Randel Lindemann, Julie Castillo-Rogez
External Collaborators: Karl Iagnemma (MIT), Gioachino Viggiani (Grenoble)

2014 Progress Update

Motivated by a recent KISS workshop on xTerramechanics at Caltech, the goal of this research is to transform the life-cycle of NASA missions, by enabling a paradigm shift where phenomenology and heuristics are sent to the back burner, and are replaced by physics-based models that accurately predict spacecraft-regolith interaction. As illustrated Figure 1, these interactions are ubiquitous to missions, and range from landing to sample collection. These interactions are also mission-critical, since failure to land on solid regolith or failure to collect a sample could result in failure of the science mission.

mission schemata

Figure 1. Schematic of hypothetical future missions with Mars and Europa as examples of celestial bodies of interest. Surface topology shown across scales and potential interactions with the surface regolith is highlighted.

Aiming at this goal, the objective of this two-year technical development proposal is to devise a physics-based characterization and modeling framework (xTerramechanics) to study the mechanics of extraterrestrial regolith and their interaction with spacecraft. The scientific premise of this proposed work is that regolith behavior is encoded at the grain scale, and that multiscale tools—which can characterize and model the behavior of the material from the grain scale (sub-mm) all the way to the engineering scale (>m)—will enable transformative approaches to mission design, planning, and operations.

Future NASA missions will emphasize in situ exploration in a variety of extreme environments, including the atmospheres of the giant planets, the surfaces and atmospheres of Venus, Mars, and planetary satellites, and the surfaces and subsurfaces of small bodies. This transformative planetary science hinges crucially on the ability to remotely sense, land on, traverse, penetrate, sample, process, and eventually return regolith. Regolith is central to planetary science as it is the bio-chemo-physiologically altered geo-material at the surface of a planetary body that encompasses extraterrestrial telluric deposits. Hence, regolith (including soils, rocks, ice) is the 'skin' of a celestial body and encodes all of the chemical and physical processes that have operated close to or on the surface. Knowledge of the properties and related behavior of planetary surface materials is an important component in the quest for unraveling planetary evolution, the development of hitherto impossible missions, and the possibility of pre-human expeditions for safety and resource utilization.

For questions contact: José Andrade, Randel Lindemann, Karl Iagnemma or Michele Judd


José Andrade

José Andrade leads the KISS supported Caltech effort.

Randel Lindemann

Randel Lindemann is one of the JPL Co-PIs.

Karl Iagnemma

Karl Iagnemma from MIT is one of the external collaborators.