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The COVID-19 global pandemic and associated government lock-
downs dramatically altered human activity, providing a window
into how changes in individual behavior, enacted en masse, im-
pact atmospheric composition. The resulting reductions in anthro-
pogenic activity represent an unprecedented event that yields
a glimpse into a future where emissions to the atmosphere are
reduced. Furthermore, the abrupt reduction in emissions during
the lockdown periods led to clearly observable changes in atmo-
spheric composition, which provide direct insight into feedbacks
between the Earth system and human activity. While air pollu-
tants and greenhouse gases share many common anthropogenic
sources, there is a sharp difference in the response of their at-
mospheric concentrations to COVID-19 emissions changes, due in
large part to their different lifetimes. Here, we discuss several key
takeaways from modeling and observational studies. First, despite
dramatic declines in mobility and associated vehicular emissions,
the atmospheric growth rates of greenhouse gases were not
slowed, in part due to decreased ocean uptake of CO2 and a likely
increase in CH4 lifetime from reduced NOx emissions. Second, the
response of O3 to decreased NOx emissions showed significant
spatial and temporal variability, due to differing chemical regimes
around the world. Finally, the overall response of atmospheric
composition to emissions changes is heavily modulated by factors
including carbon-cycle feedbacks to CH4 and CO2, background
pollutant levels, the timing and location of emissions changes, and
climate feedbacks on air quality, such as wildfires and the ozone
climate penalty.

COVID-19 | air quality | greenhouse gases | earth system | mitigation

The effects of the COVID-19 pandemic and associated lock-
down measures have provided a way to observationally test

predictions of future atmospheric composition. This is illustrated
conceptually in Fig. 1. With many people working from home

and limiting travel, the pandemic caused a significant decrease
in anthropogenic emissions. These emissions reductions can be
thought of as a jump forward in time to a future where additional
systemic emissions controls have been adopted. However, be-
cause these changes occurred in a matter of months, the changes
to the concentrations of key air quality (AQ) and climate-relevant
gases in the atmosphere were readily observable. Combining
these observations with current state-of-science models allows
us an important window into the underlying processes governing
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Significance

The COVID-19 pandemic and associated lockdowns caused
significant changes to human activity that temporarily altered
our imprint on the atmosphere, providing a brief glimpse
of potential future changes in atmospheric composition. This
event demonstrated key feedbacks within and between air
quality and the carbon cycle: Improvements in air quality
increased the lifetime of methane (an important greenhouse
gas), while unusually hot weather and intense wildfires in
Los Angeles drove poor air quality. This shows that efforts
to reduce greenhouse gas emissions and improve air quality
cannot be considered separately.

the response of the Earth system to reductions in anthropogenic
emissions and thus a preview of the relative effectiveness of
different emissions-control strategies.

Our goal is to synthesize some of the key results from the
past year into a coherent understanding of what we have
learned about the effectiveness of different strategies to reduce
greenhouse gas (GHG) emissions and improve AQ. We briefly
highlight individual components of the changes in composition
(which are well-described in the literature) but focus on the
interactions and feedbacks between different parts of the Earth
system. We will do so in four parts. First, we summarize the
observed changes in anthropogenic emissions during 2020.
Second, we examine how the reduction in CO2 emissions
impacted the atmospheric CO2 growth rate. Third, we show

that the response of AQ to NOx emissions reductions differs for
cities around the world and depends strongly on the interaction
with meteorology. We focus on ozone and nitrate particulate
matter (PM) as key AQ metrics that are strongly driven by NOx

emissions. Fourth, we discuss the implications of these results
for future AQ improvement strategies; our understanding of
processes controlling GHG concentrations in the atmosphere;
feedbacks between AQ, GHGs, and climate; and, finally, close by
identifying strengths and gaps in our current observing networks.
We draw three primary conclusions from this synthesis:

1. Despite drastic reductions in mobility and resulting vehicular
emissions during 2020, the growth rates of GHGs in the
atmosphere were not slowed.

2. The lack of clear declines in the atmospheric growth rates
of CO2 and CH4, despite large reductions in human activity,
reflect carbon-cycle feedbacks in air–sea carbon exchange,
large interannual variability in the land carbon sink, and the
chemical lifetime of CH4. These feedbacks foreshadow similar
challenges to intentional mitigation.

3. The response of AQ to emissions changes is heavily modulated
by factors including background pollutant levels, the timing
and location of emissions changes, and climate-related factors
like heat waves and wildfires. Achieving robust improvements
to AQ thus requires sustained reductions of both air pollutant
(AP) and GHG emissions.

Summary of Emissions in 2020
As AQ-relevant gases and CO2 are coemitted by combustion
processes, decreases in human activity are expected to drive

Fig. 1. Illustration of the conceptual foundation for this study. The COVID-19–induced reductions in human activity led to reduced anthropogenic emissions.
The fact that these reductions occurred over months rather than decades allows us to observe how the atmosphere, land, and ocean are likely to respond
in a future scenario with stricter emissions controls. This analysis helps to identify effective pathways to mitigate air pollution and climate-relevant GHG
emissions. Image credit: Chuck Carter (Keck Institute for Space Studies, Pasadena, CA).
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Fig. 2. Metrics for change in human activity at different scales show that the strongest impact of COVID-19 lockdowns was in the transportation sectors
and that these impacts varied substantially from country to country. A shows the Oxford Stringency Index (1) for the regions used in this figure. “US (state
mean)” is the average of individual states’ indices, and “United States” is the index attributed to the United States as a whole (not individual states; see
SI Appendix for discussion). B shows the percent change in flights (2–4) for two California airports (San Francisco International Airport [SFO] and Los Angeles
International Airport [LAX]) and three countries (lines) and container moves for three California ports (bars). C shows traffic metrics for two California urban
areas and 26 countries (“global”). CalTrans indicates California Department of Transportation Performance Measurement System data; Apple indicates Apple
driving mobility data. D shows electricity consumption in the United States by sector, relative to the same month in 2019. The three sectors shown constitute
> 96% of US power consumption. In B and C, daily metrics are relative to 15 January 2020 and presented as 7-d rolling averages, and monthly metrics are
relative to January 2020. Electricity consumption was not available after November 2020 at the time of writing.

decreases in both of these species. Fig. 2 summarizes changes
to key sectors of human activity during the COVID-19 pan-
demic. Fig. 2A shows the Oxford Stringency Index (1), which
quantifies the severity of government-imposed restrictions on
travel, businesses, schools, and other aspects of society. Fig. 2
B–D show changes in air travel and maritime shipping; traffic;
and US electricity use, respectively. There was a clear decrease
in air travel and traffic for most of the world in March 2020,
when the first major wave of COVID-19 led governments to
institute quarantine measures (see also high values of the Strin-
gency Index). Maritime shipping (to West Coast US ports) and
power generation (in the United States) were less affected. Power
generation, in particular, remained within ∼5% of 2019 levels.

Reductions in NOx emissions were apparent in both in situ (5)
and satellite (6) observations of NO2 concentrations due to the
short atmospheric lifetime of NOx (<1 d). Estimates of NOx

emissions reductions from assimilating satellite data in global
models (7), combining global chemical models with machine
learning trained on surface measurements (8), or activity data
(including electricity use, traffic/mobility data, flight data, etc.)
(9–11) find regional reductions of 10 to 40% during the strictest
lockdown periods. Generally, methods assimilating satellite data
report smaller reductions (10 to 20%) than studies based on
activity data (25 to 40%). Estimates of the reduction in global
NOx emissions in the first half of 2020 range from 5% (8)
to 13% (7).

The change in global CO2 emissions was comparable to that
of NOx emissions, as seen in Fig. 3. Liu et al. (13) report a peak
global reduction of ∼15% (4 Tg C or 15 Mt CO2) in April and
an annual total of 5.4%. In March 2020, Le Quéré et al. (14) pro-
jected a slightly larger 7% decrease in CO2 over the remainder of
2020. The largest decreases occurred in the first half of 2020, as

shown in Fig. 4A, and were primarily associated with reductions
in ground transportation (15). The response of atmospheric CO2

mixing ratios can be observed near the emissions sources; during
the strictest lockdowns, Turner et al. (16) were able to use CO2

observations from a local ground-based network to estimate a
48% reduction in traffic CO2 emissions in the San Francisco Bay
Area. Liu et al. (17) found a 63% (41 parts per million [ppm])
decrease of the typical on-road CO2 enhancement in Beijing,
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Fig. 3. The year 2020 saw reductions in CO2, CH4, and NOx emissions. CH4

and NOx are plotted along the left axis and CO2 on the right. The dashed
line for CH4 after 2017 indicates that it is estimated from the average rate of
increase. The 2020 emissions are represented as a range: The IEA estimated
a 10% decrease in CH4 emissions in 2020 (12), but this is uncertain, as the
CH4 growth rate increased in 2020. Full details are in SI Appendix.
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A

B

Fig. 4. Despite substantial reductions in anthropogenic CO2 emissions in
early 2020, the annual atmospheric CO2 growth rate did not decline. A
shows daily global CO2 emissions for 2019 and 2020, calculated following
Liu et al. (13). B shows trends in atmospheric column average CO2 from the
OCO-2. The small blue and red symbols indicate daily, deseasonalized values
as percent anomalies relative to the global 2018 mean. The solid cyan and
orange lines are linear fits to 2016–2019 data. In B, the vertical gray dashed
line marks 1 March 2020 as the approximate beginning of lockdowns in
response to COVID-19. A version of B showing the absolute trends and the
data including the seasonal cycle is available in SI Appendix, Fig. S8.

China. Distinguishing these signals in CO2 at regional scales is
more challenging. Buchwitz et al. (18) infer peak decreases in
anthropogenic CO2 emissions from China of 10% from space-
based total column CO2 measurements. However, they note that
the uncertainty is ∼100% and that the expected CO2 concentra-
tion signal is 0.1 to 0.2 ppm, out of a background of over 400 ppm.

Anthropogenic CH4 emissions are dominated by sources such
as landfills, oil and gas production, and agricultural activities. The
International Energy Agency (IEA) estimates that CH4 emis-
sions dropped by 10% in 2020 (Fig. 3), largely due to the decrease
in demand for oil and gas. However, it is unclear whether reduced
demand during 2020 was the primary driver of emissions. It is
likely that decreased maintenance of landfills and oil and gas
infrastructure during the COVID-19 pandemic led to new leaks
in some areas, which can result in those locations becoming CH4

“superemitters” (19). In general, the type, maintenance level, and
throughput of CH4 infrastructure can have a large impact on the
amount of fugitive emissions (20, 21). Further, the downturn in
oil and gas prices in 2020 may have resulted in wells being left
uncapped when the owning company went bankrupt, increasing
fugitive CH4 emissions (22). On a positive note, some of the
decrease in emissions estimated by the IEA was associated with
the installation of new oil and gas infrastructure and the adoption
of new CH4 regulations in a number of countries (12). Such
decreases would likely be sustained beyond the pandemic period.

CO2 and CH4 Atmospheric Growth Rates
The effect of CO2 emissions reductions, especially from ground
transport, was clearly apparent in urban-scale observations of
atmospheric CO2 mixing ratios (16, 17). This does not, however,
transfer to global-scale observations. Fig. 4B shows deseasonal-
ized trends in column-average CO2 mixing ratios (referred to as
XCO2) observed by the Orbiting Carbon Observatory 2 (OCO-
2) instrument. Despite the reduction in CO2 emissions in 2020
(Fig. 4A), there is no clear deflection of the observed XCO2

below what would be projected based on previous years’ growth

rates. We compared the variability in actual atmospheric CO2

growth rates derived from the OCO-2 data with that computed
from fossil fuel emissions (SI Appendix, Fig. S8B) and found that
the change in atmospheric CO2 growth caused by the COVID-
19 pandemic is smaller than the natural year-to-year variability.
This is expected, because the percent change in the CO2 growth
rate, in the absence of feedbacks, will match the percent change
in emissions. For a typical growth rate of 2.45 ppm/y since 2016
(SI Appendix, Fig. S8B and ref. 23), the 5.4% total reduction in
CO2 emissions calculated by Liu et al. (13) equals a 0.13 ppm/y
decrease in the CO2 growth rate for 2020–well within the natural
variability observed by OCO-2 (SI Appendix, Fig. S8) and surface
networks (23).

Wildfires are one element of the variability in CO2 growth
rate. The 2019/2020 Australian wildfires emitted 173 Tg of C (634
Mt of CO2) between November 2019 and January 2020, over
six times more than Australia’s average November to January
CO2 emissions for 2001 through 2018 (24). This drove an early
increase in CO2 in 2020, evident in the deseasonalized Southern
Hemisphere OCO-2 XCO2 (Fig. 4B, red series) and growth
rate derived from the OCO-2 data (SI Appendix, Fig. S8B). This
wildfire anomaly offset a third of the 518 Tg of C (1,901 Mt of
CO2) reduction in anthropogenic CO2 (13) and so does not fully
explain the offset between emissions and atmospheric mixing
ratios for CO2.

The atmospheric CO2 growth rate led to a reduction in the
rate of oceanic CO2 uptake. Fig. 5 shows the magnitude of ocean
carbon fluxes over 8 y, as computed from a model ensemble under
normal and COVID-like emissions. The COVID-like emissions
scenario was chosen near the beginning of the pandemic and
so had to assume how CO2 emissions would recover. However,
it does match the bottom-up emissions shown in Fig. 4A (13)
reasonably well through November 2020 (26).

Fig. 5 shows that a reduction from normal to COVID-like
emissions results in a decrease in ocean carbon uptake. There is
significant variation in the sea–air and CO2 flux among the model
ensemble members. This spread represents the potential interan-
nual variability in CO2 flux; given that variability, the true change
in CO2 flux in 2020 is uncertain, in part due to corresponding
variability in the land carbon sink (SI Appendix, Fig. S9). How-
ever, the ensemble mean indicates that while on short time scales,
the land carbon flux is insensitive to the change in emissions
(SI Appendix, Fig. S9), the ensemble mean ocean uptake was
reduced by 70 Tg of C/y in 2020. This would offset 14% of the
∼520 Tg of C/y (1,901 Mt of CO2 /y) reduction in anthropogenic
CO2 emissions in 2020 (13), further dampening the signal from
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Fig. 5. Sea–air carbon exchange responded quickly to the reduction in
anthropogenic CO2 emissions during 2020. Shown here are annual mean,
globally integrated sea-to-air carbon dioxide fluxes predicted from the
Canadian Earth System Model Version 5–COVID ensemble (25, 26). Black/gray
lines derive from simulations forced with Shared Socioeconomic Pathways
2–RCP4.5 CO2 emissions, while red/pink lines derive from simulations forced
with a 25% peak CO2 emissions reduction in 2020. See refs. 25 and 26 for
more details. Thick lines are ensemble averages, and thin lines are individual
ensemble members, each with different phasing of internal variability.
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emissions reductions in atmospheric CO2. Since real-world CO2

emissions recovered faster than the scenario used in this model
ensemble, the actual change in ocean uptake may be smaller.

The growth rate of CH4 was also not slowed by the pandemic.
Fig. 6A shows trends in column average CH4 (XCH4) from two
ground-based spectrometers in the Total Carbon Column Ob-
serving Network (TCCON; refs. 27 and 28) located in Park Falls,
WI (29), and Lauder, New Zealand (30, 31). The XCH4 values
after 1 March 2020 lie ∼0.3% above the 2016–2019 trend in both
hemispheres. Similarly, the National Oceanic and Atmospheric
Administration reported the single largest increase in CH4 in its
record (32).

Because the lifetime of CH4 depends on the abundance of
the hydroxyl radical (OH), the concentration of CH4 varies with
atmospheric pollution levels. In fact, we find compelling evidence
that the jump in CH4 mixing ratios during 2020 is partly due
to reductions in NOx emissions. In a model incorporating the
decreased NOx emissions associated with COVID-19 (33), the
resulting decrease in global ozone (7) leads to a 2 to 4% decrease
in global OH concentrations. As oxidation by OH is the primary
loss process for atmospheric CH4, this acts to increase CH4

mixing ratios in the atmosphere. Fig. 6B compares the trend in
XCH4 measured by TCCON to that predicted by a box model
(34). The purple series is the monthly percent difference of
TCCON XCH4 from the linear trends shown in Fig. 6A, and the
gray line is the percent difference between a box model run with
and without a 3% decrease in OH during 2020. The box model
closely matches the extra growth in atmospheric CH4 during
2020, providing strong evidence that the change in OH was an
important driver of the observed CH4 growth. As NOx emissions
largely recovered by 2021, we expect that the CH4 growth rate
would return to its prepandemic value in 2021 if OH was the

A

B

Fig. 6. Atmospheric mixing ratios of CH4 increased more rapidly in 2020
than they had in the past decade. The increase is consistent with no change
in CH4 emissions and a 3% decrease in OH (predicted from decreased NOx

emissions) during 2020. A is similar to Fig. 4B, except that it shows trends
in column-average CH4 (XCH4) from two TCCON sites: Park Falls, WI, in
the Northern Hemisphere (NH) and Lauder, New Zealand, in the Southern
Hemisphere (SH) instead of OCO-2 XCO2. B compares the TCCON XCH4

trend to that predicted by a box model. The purple series are the monthly
mean percent differences between the TCCON XCH4 and linear fits from A.
The gray line represents the percent difference in CH4 predicted by a box
model (34) with a 3% decrease in OH during 2020 compared to no change
in 2020 OH. The shaded gray area represents the range in modeled CH4

corresponding to the 2 to 4% range in the OH anomaly. The values from
2021 on represent possible CH4 growth rates after NOx emissions recover to
prepandemic levels; the dashed gray line represents the behavior if changes
in OH were the governing factor during 2020, while the dotted red line
indicates a possible trend if not.

dominant factor affecting the 2020 growth rate (dashed gray line,
Fig. 6B).

While this supports the hypothesis that changes in OH altered
the growth rate of CH4 in 2020, it does not exclude effects
from other sources. Past variability in anthropogenic and natural
sources (35) suggests that such variation also played a role in the
2020 growth rate. As discussed above, there is large uncertainty
in the trajectory of anthropogenic CH4 emissions during the
pandemic. Isotopic measurements of CH4 can help differentiate
these changes from natural sources, such as wetlands. However,
previous studies (36, 37) have shown that changes in the OH
sink can obfuscate changes in CH4 sources if not accounted for;
therefore, future studies of CH4 source apportionment through
2020 must account for this likely variation in OH. Finally, as NOx

emissions have generally been restored to prepandemic levels,
the impact on the acceleration in CH4 growth should end in 2021,
and, thus, absent changes in the emissions of CH4, the growth
rate of CH4 should return its prepandemic value in the next few
years.

If decreases in anthropogenic NOx emissions during 2020 were
responsible for the increase in CH4 lifetime that led to its higher
than expected growth rate, what does this imply for the effect
of future efforts to reduce NOx emissions to improve AQ? To
understand this, we need to examine how the 2020 NOx de-
creases affected AQ around the world. In the next section, we will
describe the ozone and PM response to these NOx reductions.
Afterward, we will explore the implications of this AQ–GHG
feedback in Discussion.

Heterogeneity in AQ Response
Most parts of the world saw significant decreases in NOx emis-
sions during the pandemic, but the magnitude and timing of these
emissions changes varied with location. Fig. 7 A–C compare time
series of NO2 column densities measured by the Tropospheric
Monitoring Instrument (TROPOMI) for three cities. Following
the beginning of lockdown measures (indicated by the dotted
lines), the 2020 NO2 column densities are clearly less than in
2019. However, in Los Angeles (LA), the drop in NO2 occurred
very rapidly when lockdowns were enacted in early March, but
by May, there was little difference between 2019 and 2020. In
Lima, on the other hand, the difference between 2019 and 2020
grew from March through May. In Shanghai, we see a very large
drop in NO2 associated with the early lockdown in January and
a smaller drop during the second lockdown in late February.

These changes in NOx emissions drove changes in secondary
pollutants, such as ozone and PM. However, the ozone and PM
responses depended on the local chemical regime and meteorol-
ogy, as well as the magnitude and timing of the NOx emissions
reductions.

In this section, we describe the factors controlling the ozone
response first, followed by total and nitrate PM. We selected
ozone and nitrate PM as key APs to focus on because both are
strongly driven by changes in NOx emissions. We also compare
the modeled change in nitrate PM to the total measured PM.

We recognize that nitrate makes up a modest fraction of total
PM compared to other PM types (e.g., organic or sulfate aerosol)
(38). For this work, we focus on nitrate PM because it has a
less complicated dependence on NOx emissions (39) than other
PM types. We expect that future studies will make use of data
collected throughout 2020 to more deeply explore the factors
controlling all types of PM.

Ozone. Ozone is a secondary pollutant produced in the atmo-
sphere from the reaction of NOx and OH with volatile organic
compounds (VOCs). The response of ozone concentrations to
changes in NOx emissions is characterized by the ozone produc-
tion efficiency (OPE), which is the ratio of the change in ozone
for a given change in NOx .
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Fig. 7. COVID-19 lockdowns dramatically reduced urban NO2 levels, which, in turn, drove changes in O3 production. A–C show 15-d rolling averages of
75th-percentile (%ile) TROPOMI NO2 column densities (molec. = molecules) in three cities for 2019 and 2020. The vertical dotted line indicates the beginning
of lockdown measures in 2020. D shows OPE modeled in 17 megacities, averaged from February to June 2020. E shows modeled monthly global averaged
tropospheric OPE. The whiskers are the minimum and maximum, the horizontal lines the quartiles and median, and the X is the mean. F is similar to E, but
averaged over 30 ◦N to 90 ◦N.

Accurately modeling the OPE to understand how ozone con-
centrations will respond to changes in NOx emissions remains an
important challenge in predicting future ozone concentrations.
A 2006 model ensemble study reported by Dentener et al. (40)
reported 1σ SDs of 50 to 80% in modeled global mean changes of
surface ozone between 2000 and 2030. Young et al. (41) showed
that net ozone production in 2030 varies by a factor of ∼ 3 in
the Atmospheric Chemistry and Climate Model Intercomparison
Project models under the Representative Concentration Pathway
(RCP) 4.5 scenario. More recently, Thornhill et al. (42) reported
that the response in change of ozone radiative forcing per unit
change in lightning NOx emissions varied by a factor of 2. Pro-
viding more accurate constraints on OPE has been challenging
due to the lack of direct observations of OPE available to con-
strain models. Because the change in NOx emissions during the
COVID lockdowns was a large step change, it provides a chance
to observe the ozone response to a NOx perturbation with fewer
confounding factors than in a decadal trend. Further, the varied
timing of the lockdown-induced NOx reductions allows us to
explore the latitudinal and seasonal variation in OPE.

Fig. 7 D–F show OPE calculated in a global model that assim-
ilates multiple satellite measurements. The OPE values shown
represent the change in ozone mass burden per unit change
in mass of reactive nitrogen emissions, using the COVID-19
reduction in emissions as the ΔNOx . To avoid convolving me-
teorological and emissions effects, these OPE values are derived
from a pair of model simulations with the same meteorology, but
different NOx emissions (business-as-usual vs. COVID). More
detail is given in SI Appendix.

Two patterns in the OPEs demonstrate the significant spatial
and temporal variability in the relationship between NOx emis-
sions and ozone concentrations. First, in Fig. 7F, the OPE in
the Northern Hemisphere increases between February and June.
This is mostly due to increasing sunlight driving key photolysis re-
actions more rapidly. Thus, the timing of NOx emissions changes
plays a significant role in the magnitude of the ozone response
in the midlatitudes and high latitudes, with a smaller ozone re-
sponse to a given NOx change during spring than during summer.
Second, in Fig. 7D, tropical and subtropical cities have the largest,
most positive OPEs. Furthermore, there is little change in OPE
with season for these cities (Fig. 7E) due to the relatively small
changes in insolation at low latitudes. Fig. 7D indicates that most
of the northern midlatitude cities have small, positive OPEs.
Two cities, however, have slightly negative OPEs (Beijing, −0.10;
Karachi, −0.06); a negative OPE indicates that ozone increased
when NOx emissions decreased. Other studies have, in fact,
identified large ozone increases in China (43) associated with
the decreased NOx emissions during the pandemic. Additional
increases in ozone were observed in Europe (44), with smaller,
but still positive, changes in ozone in the United Kingdom (45).

We use a steady-state model (SI Appendix, Fig. S10) to inter-
pret the patterns in Fig. 7. From the steady-state model, we know
OPE is small at both low and high NOx concentrations, but large
at intermediate NOx concentrations. Overall OPE also increases
with VOC reactivity (VOCR, the total rate of reaction of all
VOCs with OH in a given parcel of air) for NOx concentrations
greater than ∼ 0.1 parts per billion (ppb). Thus, in Fig. 7, areas
with negative OPE are in the high-NOx part of the OPE curve;
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sustained efforts to reduce NOx emissions will bring them closer
to the maximum-OPE tipping point, after which NOx reductions
should lead to ozone reductions. Cities in the tropics and subtrop-
ics have large, positive OPE values. This is partly due to plentiful
sunlight to drive photochemistry, but these regions also have
large VOCR values due to the abundance of biogenic VOCs (46).
The steep dependence of OPE on NOx follows because NOx is
the limiting reactant in ozone production in these high-VOCR

conditions. Thus, these cities should see large ozone reductions
from NOx reductions. However, of the equatorial cities shown
in Fig. 6, only those located in South Asia had large enough
reductions in NOx emissions during the COVID-19 pandemic to
produce substantial reductions in surface ozone (3 to 5 ppb) (7).

Comparing our OPEs to those from past model studies pro-
vides evidence of a long-term transition to NOx -limited chem-
istry. Fry et al. (47) found mostly negative OPEs with 2001
emissions, while Zhang et al. (48) found positive OPEs with
2010 emissions. Our OPEs are still mostly positive, but typically
smaller than those of Zhang et al. This pattern is consistent
with moving from NOx -suppressed to NOx -limited chemistry
(SI Appendix, Fig. S10). However, we see that there are differ-
ences in the sign of OPE among cities in south and east Asia. This
indicates that it is important to track local, rather than regional,
OPE values to understand the driving chemistry in a given city.

We also see this heterogeneity in ozone response to NOx emis-
sions reductions at the intraurban scale. Measurements of daily
maximum (DM) NO2 and ozone at monitoring sites throughout
the LA Basin show consistent reductions in NO2 throughout
the basin in March and April of 2020, but smaller reductions in
ozone in the central northern part of the basin than elsewhere
(SI Appendix, Figs. S1 and S2). This is consistent with the near-
zero OPE for LA in Fig. 7D, i.e., for a city on the verge of
reducing NOx emissions to the point where NOx is the limiting
factor in ozone production. While the overall basin chemistry
is at this tipping point, local differences in emissions as well as
transport of pollutants within the basin can lead to these small-
scale differences in ozone response (49).

However, the behavior of ozone in the LA Basin also illus-
trates that ozone production depends on temperature; thus, NOx

controls may become less effective in a warmer climate. Fig. 8,
Top and Middle show time series of DM NO2 and ozone. NO2

and ozone concentrations are clearly lower in March and April
2020 compared to the 2015–2019 average, in part due to the
reduction in NOx emissions at the beginning of the lockdown.
However, these 2 months were significantly cooler than the 2015–
2019 average as well. When temperatures rose above average
during an unusual heat wave in late April and May of 2020,
ozone DM rose above the range seen in 2015–2019, despite the
fact that NO2 remained similar to 2015–2019 concentrations.
An increase in ozone during April and May was also seen in a
previous study (50). The response of ozone per degree increase
in temperature is shown in SI Appendix, Fig. S3. Typical values
for the O3 season (May–September) in 2020 throughout the
basin were 1.8 to 5.8 ppb · K−1. This is higher than a previous
prediction of about 1 ppb · K−1 in the basin (51), suggesting
that the ozone climate penalty may be stronger than expected;
however, analysis is ongoing.

PM. Achieving long-term reductions in PM (especially PM 2.5,
particles with a diameter <2.5 μm) concentrations is a matter
of great importance due to the large health impacts of PM
compared to ozone (52). Our interest here is to use observations
from the pandemic period to better understand some of the
factors controlling atmospheric PM concentrations, rather than
focusing on the question of whether PM exposure increases the
chance of death from COVID-19.

The factors controlling PM concentration are more compli-
cated than those for ozone. PM arises from primary emissions
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Fig. 8. In LA, temperature and wildfires drove ozone and PM pollution,
respectively, more than changes in traffic. The three panels show 7-d rolling
average of 24-h PM2.5, 1-h DM NO2, and 8-h DM O3, respectively, by day
of year in 2020 and in the past 5 y (2015–2019) in the LA Basin. Bars in
the background show the 7-d rolling average of basin-average 1-h DM
temperature in 2020 relative to the 2015–2019 average (±1σ) by day of year.
The 2020 data are preliminary, unvalidated, and subject to change.

and natural sources, as well as secondary chemistry in the at-
mosphere. One such secondary pathway is the formation of
nitrate PM from the reaction of higher oxides of nitrogen (such
as HNO3) with ammonia (39). Nitrate PM formation via this
pathway may be limited by either available NOx or ammonia.

We use model simulations (SI Appendix, Fig. S4) to evaluate
the effect that NOx emissions reductions had on nitrate PM
formation in LA. As with ozone, these results are derived from
two model runs with the same meteorology, but different emis-
sions, to isolate changes in chemistry from meteorological effects.
Under COVID-19 emissions, the nitrate PM concentrations de-
creased by ∼60% in April 2020. At the same time, the model
reported a shift toward NOx -limited (rather than ammonia-
limited) chemistry. This implies that the NOx emission decreases
in April, when the shift in the chemical regime showed the
largest change, were more efficient at reducing nitrate than the
reductions in other months. Compared to the measured total
PM reductions shown in Fig. 8, Bottom, our results suggest that
NOx emissions reductions account for about 10% of the total
PM reduction in the LA Basin during the COVID-19 lockdowns.
This agrees with other recent work (53), which indicates that
traffic NOx emissions contribute less than 10% of secondary PM
production throughout North America, Europe, and East Asia.
This is also consistent with the long-term trend in nitrate PM
reported by Hasheminassab et al. (54), who showed reasonably
consistent decreases of nitrate PM mass in LA between 2002 and
2013. Our work does show a stronger effect of NOx emissions
reductions on nitrate PM than Pusede et al. (55) predicted;
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however, that work focuses on winter nitrate in the San Joaquin
Valley, CA, whereas our results focus on springtime PM in LA.

The relative availability of NOx and ammonia elsewhere in the
United States plays an important role in whether NOx emissions
reductions lead to reduced nitrate PM. Simulations of nitrate
chemistry over the continental United States show that LA is
somewhat unique as an urban area that experienced a significant
shift to NOx -limited nitrate chemistry. Other urban areas in the
northeast, southeast, and northwest largely remained ammonia-
limited (SI Appendix, Figs. S5–S7). This could explain, at least in
part, the scattered response of PM to NOx emissions reductions
across US cities seen in other studies (56) and is consistent
with weak trend of nitrate PM mass in New York reported
by Squizzato et al. (57). Our work also implies that continu-
ing the long-running trajectory of NOx emissions reductions in
LA in order to reach the tipping point where ozone becomes
NOx limited will also benefit AQ via reduced production of
nitrate PM.

However, LA also represents a cautionary tale about attribut-
ing AQ changes to the COVID-19 pandemic without accounting
for other confounding factors. Weather and wildfires also played
a large role in determining the PM concentrations in LA during
2020. When the lockdowns were first instituted in March, news
outlets and social media attributed the clean air in the LA Basin
to the lack of traffic. However, as seen in Fig. 8, the lower
PM concentrations in March and April 2020 than 2015–2019
(Fig. 8, Bottom) coincide with anomalously cool weather, which
was accompanied by higher than average precipitation (figure
S1 in ref. 49). Precipitation removes PM from the atmosphere
through wet deposition (58, 59) and was at least partially respon-
sible for the clean air during this period. The extreme spike in
PM concentrations seen in September 2020, on the other hand,
coincides with a time period when major wildfires were burning
in close proximity to LA. Like the April–May heat wave, this
event also points to the fact that climate change can erase existing
progress in AQ improvements.

Discussion
The changes in atmospheric composition throughout 2020 un-
equivocally demonstrate that AQ and GHGs cannot be treated
as separate problems, despite the disparate time scales of AQ
and GHG responses to changes in human activity. AQ is most
dependent on local changes in emissions because of the shorter
atmospheric lifetime and rapid chemistry of APs. In contrast, the
global total GHG emissions matter more than local emissions,
as it is the overall GHG atmospheric growth rate that drives
climate change. As discussed above, improvements in AQ made
by reducing pollutant emissions locally can be offset by changes
in meteorology or nonanthropogenic (e.g., biogenic or wildfire)
emissions driven by climate change. Likewise, changes in AQ can
alter the radiative forcing driving climate change, as decreases in
AP emissions could lead to increased lifetimes for shorter-lived
GHGs (such as CH4), increasing their global warming potential.

Reductions in NOx emissions during the pandemic did show
the potential benefits cities can gain by promoting systemic
change to accomplish these same reductions. For most countries,
the pandemic-induced emissions reductions can be seen as
going back in time to a period when NOx emissions were
lower. In the United States, Europe, and China, where NOx

emissions have been trending downward, these reductions were
more akin to a jump forward in time to a lower-emissions
future. Fig. 9 shows the equivalent year for each country’s
NOx emissions during the pandemic, assuming recent trends in
NOx emissions hold constant. Most striking is how much more
quickly China could reach pandemic-like emissions levels than
the United States or Europe. Though all three regions’ emissions
reductions had similar peak magnitudes (18 to 20%), Europe and
especially the United States are further along their respective

COVID-19 Equivalent NOX Emissions Year by Country

Fig. 9. The emissions reductions during the pandemic are, in a sense,
like moving forward or back in time. Countries are colored by the year to
which their 2020 NOx emissions are equivalent, projected forward in time
where emissions have been decreasing and backward elsewhere. Details of
emissions estimates are given in SI Appendix.

NOx -reduction pathways than China. This, combined with
China’s higher prepandemic emissions levels, means that China
can make progress quickly if they are able to maintain the
aggressive pace of emissions reductions they have set over the
past decade (33).

Many cities in the United States and Europe are close to reach-
ing a point at which NOx emissions will be a very effective control
on ozone concentrations. In Fig. 7D, cities with an OPE near zero
are likely at the tipping point between VOC-limited and NOx -
limited chemistry. Further NOx reductions should move them
firmly into NOx -limited chemistry, where NOx is the primary
control on ozone formation. While sustaining these emissions
reductions may be challenging due to the decreasing contribution
of on-road gasoline emissions (60) and the impact of emissions
reductions being offset in part by increases in chemical lifetime
(61), the rewards in doing so are likely substantial. In addition,
since NOx and CO2 are coemitted by combustion processes, reg-
ulations such as those that encourage a transition to electric ve-
hicles will also reduce GHG emissions driving climate change. In
fact, recent work has shown that the cost savings associated with
reduced health impacts from air pollution will outweigh the cost
of transition to a clean carbon economy and that the increased
radiative forcing from longer-lived CH4 and ozone is balanced by
the decrease in forcing from smaller CO2 mixing ratios (62). On
the other hand, measures such as NOx removal from coal-fired
power plants will benefit AQ, but not limit GHG emissions and,
thus, their impact on climate change; as discussed below, this will
eventually limit their effectiveness for improving AQ.

The same strategies to improve AQ will not be equally effective
in all locations. On one hand, the tropical and subtropical cities
with large, positive OPE values in Fig. 7D can immediately
realize substantial ozone reductions through reductions in NOx

emissions. On the other hand, cities such as Beijing and Karachi
with negative OPEs or locations such as the United Kingdom,
where in situ studies found a negative correlation between NOx

emissions and ozone concentrations (45), would do better to
reduce VOC reactivity simultaneously with NOx emissions. Such
an approach would allow them to avoid the chemical regimes
with the largest OPEs (63) (SI Appendix, Fig. S10A). Similarly,
while chemical formation of ammonium nitrate PM in LA be-
came NOx -limited during the pandemic, most other cities in the
United States remain ammonia-limited and would see stronger
reductions in PM by controlling primary emissions, organic pre-
cursors, or other key species.
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Unfortunately, 2020 has also shown that improvements in AQ
are likely to be offset by climate feedbacks. Such effects were
most apparent in LA, where warmer than average May tempera-
tures led to ozone concentrations above the 2015–2019 average;
greater than average precipitation in March and April likely
contributed to the reduction in PM; and severe wildfires from
late August through September caused PM concentrations four
times that of the 2015–2019 average. Changing climate will affect
each of these variables, leading to warmer temperatures, more
wildfires (64), and potentially more intense, but less frequent,
precipitation (65), giving PM more time to accumulate between
wet deposition events.

Changes in AP emissions, particularly NOx emissions, have
potential to feed back into climate change as well. As we showed
in Fig. 6, there is compelling evidence that reductions in OH
stemming from reduced anthropogenic NOx emissions drove a
∼ 0.3% jump in CH4 during 2020. While tropical cities have the
greatest potential for decreasing ozone by reducing NOx emis-
sions (Fig. 7D), they also have an outsized impact on atmospheric
CH4 lifetime, as the largest share of CH4 oxidation occurs in the
tropics (34). Since only tropical cities in South Asia had substan-
tial changes in NOx emissions during 2020 (7), 2020 represents
a minimum benchmark for the effect of NOx reductions on the
CH4 growth rate. It is therefore essential to invest in strategies
to reduce fugitive CH4 emissions (such as updated CH4 storage
and transportation infrastructure to prevent and limit leaks,
landfill CH4 capture, and confined animal feed-operation CH4

mitigation) ahead of decreases in tropical NOx emissions.
In terms of GHG emissions driving climate change, despite a

reduction in global emissions equivalent to going back in time
9 y (to 2011-equivalent CO2 emissions), any change to the global
CO2 growth rate was smaller than typical interannual variability.
As mentioned earlier and discussed in more detail below, this
is partly due to the offsetting reduction in ocean carbon uptake
(Fig. 5), but also arises because the sharp decreases in CO2

emissions during the first half of 2020 were not sustained. By the
second half of 2020, emissions due to power generation, industry,
and residential consumption had nearly returned to 2019 levels
(13). If we assume that these emissions levels represent a balance
between reduced activity to limit the spread of COVID-19 and
sufficient activity to maintain a minimum economic productivity,
this suggests that reducing activity in these sectors is not practical.
Reducing these sectors’ emissions permanently will require their
transition to low-carbon-emitting technologies.

One interesting aspect of the GHG emissions reductions dur-
ing the pandemic was that they provided a chance to study the
feedback in ocean carbon uptake. The model simulations using
COVID-like CO2 emissions shown in Fig. 5 indicate that the sea–
air carbon flux adjusts rapidly in response to changes in anthro-
pogenic emissions. That model ensemble mean indicates a re-
sponse time of about 1 y. Although this basic response—a decline
of the ocean carbon sink in response to mitigation—is accounted
for in the RCP scenarios (66), much uncertainty remains as to
the accuracy of these ocean sink predictions. This uncertainty is
due both to the forced response of the ocean and to interannual
variability. Lovenduski et al. (26) found that, for a change in
ocean carbon uptake to be observable with our current network
of ocean buoy measurements, it would need to be four times
larger than the COVID-19 emissions reductions. This will be a
challenge as we work to quantify the effect of future permanent
CO2 emissions reductions on atmospheric CO2 mixing ratios.

The pandemic does offer insight into how the atmospheric
GHG growth rates could be curtailed: systemic changes are re-
quired to enable sustained reductions in emissions. The efficacy
of sustained reductions (without systemic changes to the energy
sector) can be seen in the contrast between CO2 emissions from
ground transport and international shipping and aviation (“inter-
national bunkers”) reported by Liu et al. (13) The peak reduction

in international bunkers’ emissions was only ∼1/3 that of the
reduction in emissions from ground transport, by mass. However,
while ground transport recovered fairly quickly, the international
bunkers’ emissions remained at about half of 2019 levels through-
out the second half of 2020. As a result, the cumulative reduction
in 2020 emissions due to international bunkers was 75% that
of the reduction due to traffic, despite the comparatively small
magnitude of the daily emissions from international bunkers.

Sustained reduction in other sectors will require investment
in renewable energy and new technologies to support current
levels of productivity with lower carbon emissions—that is, to
reduce the carbon intensity of our economy. Such investment is
essential, as several studies (67, 68) have documented the harm
to employment, family connections, and other critical human
connections from the reduction in personal mobility due to the
pandemic. Liu et al. (13) note that Spain’s 2020 emissions due
to power generation were almost 25% lower than in 2019 due
to investment in renewable energy. A post-COVID economic
recovery represents an opportunity to invest in carbon-reducing
technologies (69), as long as the need to balance short-term job
creation with long-term retraining is accounted for (70). If this
investment was able to continue the trend of a 5.4% decrease in
global CO2 emissions per year, we would reach “preindustrial”
(circa 1850) emissions levels in ∼18 y.

Strengths and Weaknesses of Current Observing Systems
Understanding how the COVID-19 pandemic has altered AQ
and the carbon cycle has relied heavily on the multifaceted
observing system built over the past two decades, including satel-
lites, dense ground-based observing networks, Earth system and
chemical transport models, and techniques to assimilate obser-
vations into these models. Novel data on human activity (partic-
ularly internet-of-things mobility data, crowd-sourced air traffic
data, and even news reports) have also played a vital role in both
understanding how human behavior changed during the pan-
demic and quantifying the effect of that change on anthropogenic
emissions.

Nevertheless, there remain important gaps in our observing
network. First, space-based detection of VOCs remains a
challenging problem, yet quantitative measurements of key
biogenic (e.g., isoprene, terpenes) and anthropogenic (e.g.,
ethene, propene) contributors to VOC OH reactivity are needed
to identify the dominant chemistry governing AQ around
the globe. Second, as we saw in the LA Basin case study,
disentangling primary PM emission, secondary PM formation,
and meteorological drivers of PM concentration is crucial to
understanding which processes control PM exposure. Given the
serious health impacts of PM exposure, work toward integrated
analyses of surface and space-based systems that can differentiate
these processes is needed to elucidate the optimum approaches
to reducing PM exposure.

In regard to climate-change-relevant GHG observations, spa-
tiotemporally broader and denser space-based GHG observa-
tions would provide a highly valuable empirical constraint on
changes to anthropogenic and biogenic carbon fluxes. A satel-
lite instrument that provided comparable observations to the
BEACO2N network (Berkeley Environmental Air-quality and
CO2 Network) in the San Francisco Bay area (∼ 2-km reso-
lution, strong sensitivity to the near-surface atmosphere, and
urban-scale coverage) could apply similar inversion techniques
as Turner et al. (16) to infer key sectors’ emissions in cities
around the world. It is also clear that our current network of
near-real-time ocean carbon uptake measurements is not suffi-
cient to disentangle internal variability in the air–sea carbon flux
from changes driven by reductions in anthropogenic emissions
(26). Expanding this network or developing new methods to
constrain the air–sea carbon flux from space will be necessary

Laughner et al.
Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks
between atmospheric chemistry and climate change

PNAS 9 of 12
https://doi.org/10.1073/pnas.2109481118

D
ow

nl
oa

de
d 

at
 C

al
ifo

rn
ia

 In
st

itu
te

 o
f T

ec
hn

ol
og

y 
on

 N
ov

em
be

r 
11

, 2
02

1 

https://doi.org/10.1073/pnas.2109481118


to quantify the impact of anthropogenic emissions reductions on
atmospheric CO2 mixing ratios.

Conclusions
The COVID-19 pandemic and associated changes in human
behavior represent an unprecedented rapid change in anthro-
pogenic emissions to the atmosphere. Due to the large differ-
ences in relevant atmospheric lifetimes for constituents central to
AQ and climate change, clear changes in local AQ, but not global
GHG, trajectories were observed. The response of O3 to the
reduction in NOx emissions (OPE) varied significantly in space
and time. Likewise, the reduction in NOx emissions reduced
nitrate PM in LA, but had limited effect elsewhere in the United
States. These results indicate that optimum strategies to improve
near-future AQ differ around the world. Additionally, changes in
AQ in the LA Basin correlated with temperature, precipitation,
and severe wildfires, indicating that shifts in these quantities
associated with climate change will at least partially offset gains
in AQ made from past and future reductions in anthropogenic
emissions. In the long-term, shifting toward electrified transport
and renewable electricity generation offers cobenefits to climate
and AQ, as discussed above.

Despite large disruptions in transportation-emissions sectors,
the global-scale change in the CO2 growth rate was less than
interannual variability. This is due to a combination of reduced
ocean uptake of CO2, a recovery of CO2 emissions in the second
half of 2020, and large interannual variability in land carbon
fluxes. The lack of change in CO2 growth rates though 2020
indicates that expecting changes to individual behavior to be
sufficient to halt the increase of GHGs in the atmosphere is
unrealistic. Instead, incentives to deploy new methods to sys-
tematically and sustainably reduce carbon intensity are needed.
Given the bidirectional feedback between climate change and
AQ, it is clear that climate and AQ can no longer be considered
separate problems; prompt action to reduce anthropogenic car-
bon emissions is essential, not only to avert direct climate change
impacts, but to avoid giving up decades of hard-won progress in
improving urban AQ.

The COVID-19 experience allowed us to observe the response
of Earth system processes to a rapid and large change in human
activity, emissions, and consequent impacts. This is in contrast
to previous analyses that have had to rely on sophisticated tech-
niques to disentangle long-term anthropogenic signals that are
often much smaller than the various uncertainties and natural
variability in the system. In addition to geophysical relationships,
the pandemic and associated lockdowns also revealed the re-
sponse of emissions to changes in human behavior and activ-
ity, particularly related to mobility and their attendant impacts,
which usually have to be inferred far more indirectly. These fac-
tors, coupled with the unprecedented observing systems in place
during the pandemic, greatly reduce the uncertainties associated
with our analysis. For example, Fig. 4 shows the consequences,
or lack thereof, of reduced emissions on concentrations of CO2,
revealing a critical feedback. Similarly, changes to OPE (Fig. 7)
show that the response of ozone to NOx emissions varies substan-
tially in time and space. The COVID-19 period generated Earth
system responses of unusual magnitude, revealing processes with
unique clarity, in some cases confirming theory and models, while
in others showing unexpected behavior.

Materials and Methods
Full methods are available in SI Appendix. Analysis of LA Basin AQ used
data from California Air Resources Board monitors, filtered for complete

data records in the 2015–2020 period. The 1-h DM NO2 and temperature,
8-h DM O3, and 24-h average PM were calculated from these data. OPE
was derived from model simulations using multiconstituent assimilation of
multiple satellite measurements in the MIROC-CHASER (Model for Inter-
disciplinary Research on Climate coupled with the Chemical Atmospheric
General Circulation Model for Study of Atmospheric Environment and Ra-
diative Forcing) model (33). OPE was calculated by comparing modeled O3

production and NOx emission difference between baseline (2010–2019) and
reduced 2020 emissions. Separate PM2.5 simulations used Goddard Earth
Observing System (GEOS)-Chem version 9-02 with NOx emissions consistent
with the OPE simulations: Baseline NOx emissions used HTAP v2 scaled
to 2017 using satellite-derived emissions-reduction ratios, and COVID NOx

emissions were scaled down by the same factor as in the OPE simulations.
Uncertainty on simulated nitrate PM2.5 was estimated at 54% from the
quadrature sum of errors due to aerosol thermodynamics, NH3 flux scheme,
and NH3 emissions. The TROPOMI time-series analysis first regridded native
TROPOMI pixels to a 0.01◦ × 0.01◦ grid and filtered to primarily remove
cloud and snow/ice-contaminated scenes. The time series show the 75th
percentile of 15-d rolling average NO2 columns in a 1◦ × 1◦ box around each
city.

Global CO2 emissions estimates were derived from an array of near-real-
time data on power generation, industry, transport, and fuel consumption.
XCO2 growth rates were derived from OCO-2 v10 ocean glint data and
XCH4 growth rates from TCCON GGG2014 data. The data shown are 15-d
running averages deseasonalized by fitting a four-harmonic curve. Expected
CH4 trends were computed from a two-box model (representing the two
hemispheres) using prescribed OH concentrations and constant CH4 emis-
sions after 2012. TCCON data can be obtained from the TCCON Data Archive
hosted by CaltechDATA (https://tccondata.org/).

Ocean CO2 flux simulations are from a 30-member model ensemble (25,
26). Differences in ensemble mean fluxes are considered significant at twice
the SEM.

Data Availability. GEOS-Chem Model Output data have been deposited in
Zenodo (https://zenodo.org/record/4849416) (71). Publicly available datasets
are listed along with data generated from this study and stored in public-
facing repositories in SI Appendix, Table S1. Emissions data for Figs. 3 and
9 are given in SI Appendix, Table S2. Data for the OPE values in Fig. 7 are
given in SI Appendix, Table S4. Emissions and OPE data are also included as
Datasets S1 and S2. In addition, previously published data (1, 2, 13, 25, 29–31,
35, 72–84) were used for this work.
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