

The Latest Airship Technology From Near Space Corporation

Airships: A New Horizon for Science Keck Institute for Space Studies Cal Tech 1 May, 2013

Tim.Lachenmeier@nsc.aero

Unpowered Airships, Tactical Balloons, Return Vehicles, and Some Good Places to Fly

Airships: A New Horizon for Science Keck Institute for Space Studies Cal Tech 1 May, 2013

Tim.Lachenmeier@nsc.aero

FOCUS

Briefing Focus:

- HOW
- WHERE
- WHEN
- WHY

Bridging The Gap To Space

Lightweight Science Payloads on High Altitude Long Duration Balloons and Airships

HISTORICAL Provider of Near Space Solutions
NOTE

LCANS 2009 - NCAR Mesa Lab, Boulder, Colorado

SOME INITIAL OBSERVATIONS

Bridging The Gap To Space - Lightweight Science Payloads on High Altitude Long Duration Balloons and Airships

Everything is Relative:

- Gap to Space
- Lightweight ('PongSAT', 6 lbs, 80 lbs, 2000 lbs)
- Science
- High Altitude (60-70kft, 100kft, 130kft, 170kft)
- Long Duration (2 days, 60 days, 100 days, several months, 744 days)
- Balloons and Airships (weather balloons, polyethylene zero-pressure, polyethylene superpressure, zylon, re-usable multi-layer envelopes)

LCANS 2009 - NCAR Mesa Lab, Boulder, Colorado

SOME INITIAL OBSERVATIONS

A STATE OF THE STA

Bridging The Gap To Space - Lightweight Science Payloads on High Altitude Long Duration Balloons and Airships

Everything is Relative.... Including:

- Costs (\$2,500, \$100k,\$3M, \$25M, \$200M+)
- Performance ("let's see what happens", 95% success rate)
- Schedule (few months, few years, "sometime during my career")

LCANS 2009 - NCAR Mesa Lab, Boulder, Colorado

FOCUS OF PRESENTATION

NSC's Part of High Altitude Ballooning:

- Background
- Experience
- Markets/Customers
- Core Capabilities
- Applicable Technology/Systems

- Design
- Analysis
- Integration
- Testing

Manufacturing

- Prototyping
- Fabrication
- Assembly

Flight Operations

- FAA Coordination
- Mission Planning
- Balloon Flights

Engineering

- Specialize in custom inflatable, balloon, material, and mechanical engineering
- · Balloon design and analysis using custom tools and software
- Flight train hardware design, testing, and certification
- In-house testing capabilities
 - Materials characterization
 - Elevated and cold temperature testing
 - Altitude chamber testing (pressure, density, and temperature up to 130,000 ft std atm)
 - Hangar Inflation tests

Manufacturing

- Fabrication
 - Hot wheel, band, impulse, and RF sealers
 - Computer controlled and manual sewing machines
- Assembly
 - On-site staff skilled in handling inflatable articles & vehicles

Assembly / Inflation / Integration

Versatile Sealer Technology

Flight Operations

- FAA coordination, mission planning, & operations oversight
- Equipment on-site: 25 ton crane, service truck ("dually")
- Tracking aircraft for airspace de-confliction, telemetry, filming, etc.
- Self Contained (air-conditioned) Mobile telemetry & command trailer

Flight Operations

- Mission planning and tracking software
 - Trajectory forecasts and real-time monitoring
- Portable situational awareness system
 - VHF GPS beacons and multi-target tracking software
 - Displays target locations on Google Earth
 - Tracks multiple air and ground assets simultaneously with continuous range, bearing, course and speed data
 - Stand alone units located in tracking aircraft, recovery vehicles, etc.

NSC Telemetry Trailer Command Center

NSC Mission Planning Software

ESTABLISHED NSC LAUNCH LOCATIONS

TILLAMOOK FACILITIES

WWII Blimp Hangar

- 1,072 ft Long x 296 ft Wide x 192 ft High
- Ideal for prototype inflation
- Balloons inflated inside, moved out

Tillamook Airport

- Low use, good for balloon launches
- Blimp mooring areas for operations
- Low population density area

W-570 Special Use Airspace

- 24 miles off coast of Tillamook
- Ocean surface to 50,000 ft.
- NSC is member of Western Air Defense user's group (same priority as DoD members)

NEW TILLAMOOK FACILITY – INTEGRATED OPERATIONS

Highly Integrated Facility

- Engineering
- Production
- Payload/Platform Integration & Testing
- Currently completing construction (Initial Operating Capability Scheduled for April 2013)

NEW TILLAMOOK FACILITY – AIRSIDE OPERATIONS

Through the Fence Operations

- Large Integration Hangar
- Command Center/Observation Tower
- Direct Access to Launch & Recovery Areas

Johnson Near Space Center (JNSC) – Initial Operations May 2013

JNSC SITE Map

MADRAS LAUNCH SITE

Madras Airport, Madras, Oregon

- 117 miles SE of Portland
- Low-use public airport
- Low use, good for balloon launches
- Low population density area

HAWAII LAUNCH SITE

South Point, Hawaii

- Island of Hawaii ("Big Island")
- 47 miles South of Kona
- Moderate climate
- Fly over open ocean
- Moderate climate
- Low population density area

COMMERCIALLY OFFERED NANO BALLOON SYSTEM (NBS)

Standard Service

- Payload Mass:1 kg (2.2 lbs)
- Payload Size: 10 cm x 10 cm x 10 cm (0.4" x 0.4" x 0.4")
- Services To Payload: Passive Payloads Standard
- Float Altitude: Up to 30 km (98 kft)
- Duration at Float Altitude: Up to 3 hours
- Location: Tillamook, Oregon
- Benefits:
 - Rapid Integration
 - Operates Under Minimal FAA Regulations
 - Offers Longer Duration than Neoprene Balloon

Non-Standard Services

- Greater Payload Masses
- Higher Float Altitudes
- · Longer Durations at Float Altitude
- Remote Launch Locations
- Payload Thermal Insulating Containers for Different Payload Volumes
- Command Signals and Onboard Data Storage

NBS Polyethylene Balloon

NBS Avionics Housing

NBS Payload Thermal Insulating Container

COMMERCIALLY OFFERED SMALL BALLOON SYSTEM (SBS)

Features:

- Command, Telemetry, & Onboard Data Storage
- Float Altitude: Up to and Beyond 35 km
- Duration at Float Altitude: Up to 24 hrs
- Standard Interfaces for Streamlined Integration
- Payload User's Handbook Available
- Rapid Payload Change-Out for Rapid Re-Flight

Time (seconds) vs. Altitude (m) of Example SBS Mission

SBS Prototype Flight - Nighttime Launch

SBS Avionics Housing

RECENT NASA FOP NMT SBS FLIGHT

NASA Flight Opportunities Flight for NMT:

- Flown 20 January 2013 from NSC Madras Launch Site
- New Mexico Tech Payload
- Payload Sponsored by FAA AST (Commercial Space)
- Flight Sponsored by NASA OCT FOP
- Prototype Technologies for Structural Health Monitoring
- Provided relevant environment (~101,500 ft)
- Float Duration (~1hr)
- Multiple Experiments

NMT SBS FLIGHT TRAIN (Post Launch)

NMT SBS PAYLOAD CHECKOUT

NMT SBS PAYLOAD (Post Landing)

HASS Hybrid Platform – Stratospheric Balloon/Return Vehicle

Demonstrated HASS Capabilities

10+ kg payloads

• Shuttle has been demonstrated w/ 15 kg science payload

 Tactical launch system currently handles up to 45 kg (w/ parachute recovery instead of glider)

20-30 km altitudes

Up to 40 km possible with custom balloon envelope & larger launch bag

6 to 24+ hour flight durations

- Extended time at altitude
- Ballast required to fly through sunset

Streamlined operations

- Flexible Payload Bay Provides Easy Integration
- Rapid Payload Changeout
- Launched with 3 man crew in up to 30 kt winds
- Autonomous flight and landing capability
- Radar/RF Transparent Shell
- Non-turbulent Flight Environment

High-speed Descents

• .8 Mach max design speed (have demonstrated transonic flight)

Autonomous Return and Landing

HASS Persistence

Persistence Through Constellation Replenishment

- Platform uses tactical balloons which allows:
 - Launch in up to 30 knots from austere location and minimum launch crew
 - Altitude tuned immediately prior to flight for best duration over target (slowest wind speeds)
 - New platform is launched to maintain desired effect
 - Multiple platforms can provide spatial observations and provide line of sight data relay

NSC WindStar Balloon Technology

Long Duration – Altitude Control

- NOAA GAINS Program (Planned for a Constellation of 400 platforms)
- Global Capability
- Can Modify Flight Trajectory (via Altitude Control)
- Up to 150kg Payload
- Up to 80kft Altitude
- 100 day duration

NOAA Smart Balloon

Composite Spectra Shell, Polyethylene Bladder and Polyurethane Helium Cell (Based on NSC Windstar Technology)

- Iridium C3 System
- Battery Powered Pump
- Low Altitude Tracer

DRIFTSONDE

Driftsonde Balloon Platform

- Stratospheric balloon lifts 50+ sounding devices to ~100 kft
- 23 Launched from NSC Hawaii Facility as part of TPARC
- Balloon drifts over Pacific toward Southeast Asia
- Sounding devices (dropsondes) drop to measure temperature, pressure, moisture, position, time, and velocity
- Partnership with NCAR, (part of NSF) & CNES (French space agency)
- In situ measurement data used to create more accurate weather models, validate satellite data

Driftsonde Balloon Inflation

Dropsonde

STRAT

Stratospheric Reconfigurable Airship Testbed (STRAT)

- Expendable Mission Customized Envelope
- Powered Payload Return Vehicle
- Hangar Inflated and Tested
- Multi-day Duration
- Relative Persistence/Maneuverability
- <100kg to <80kft</p>
- NDA required to learn more

WHEN

When?

- Most stuff off the shelf or within a few (couple) months
- HASS flying end of May from Tillamook
- Tactical Balloons >75lbs on the shelf
- Windstar systems 3-6 months
- STRAT 12 to 18 months for initial demo (pending funds)

CONCLUSION

Questions?

Tim Lachenmeier, PE
President
Near Space Corporation
Tillamook Flight Facility
(503) 842-1990 office
(503) 816-2196 mobile
Tim.Lachenmeier@nsc.aero