Uncertainties in Water vapor: Budgets in two versions of CAM (Track 1 and Track 5)

Cécile Hannay, Dave Williamson, Jerry Olson, Rich Neale, Sungsu Park, <u>Phil Rasch</u>*, Andrew Gettelman and Hugh Morrisson.

National Center for Atmospheric Research, Boulder *Pacific Northwest National Laboratory, Richland

What are Track 1 and Track 5?

• Track 1 = cam 3.5.1

- Deep convection: Neale-Richter (2008)
- Microphysics: Rasch-Kristjansson (1998)
- Boundary layer: Holtslag-Boville (1993)
- Shallow convection: Hack (1993)
- Bulk Aerosol Model (BAM, Barth, Rasch, Mahowald ... 2000-2009)
- Radiation: CAMRT (Ramanathan, Kiehl, Collins,...1970s-2006)

• Track 5 = cam 4

- Deep convection: Neale-Ritcher (2008)
- Microphysics: Morrison and Gettelman (2008)
- Boundary layer: Bretherton and Park (2009)
- Shallow convection: Park and Bretherton (2009)
- -Macrophysics: Park, Rasch, Bretherton (2009)
- Modal Aerosol Model (MAM): Ghan and Liu
- Radiation: RRTMG: Iacono et al (2008)

Water vapor biases

Clear Sky OLR

Motivation

• Analysis of the budget for temperature, moisture and condensate

Climate runs: understand the balance that controls the climate

- Forecast runs:
 - understand attain this balance how we

Water vapor budget

Global annual means: q profiles and tendencies

Global annual mean: physics tendencies break-up

Budget terms in various regimes

- Stratocumulus
- Transition
- •ITCZ
- Bay of Bengal
- •Storm Tracks
- •Arctic
- Continental US
- •Tropical land

http://www.cgd.ucar.edu/cms/hannay/internal/cam4_dev/budgets/t1_t5/Budget_t1_t5.html

Stratocumulus

Transition region

Conclusion and future work

- Budgets help to understand the balance that controls the climate
- Water vapor tendencies are very different in Track 1 and 5, even when the states in the two tracks are similar.

A major difference is in the shallow convective tendencies, which are globally stronger in Track 5 than Track 1

The drying of the upper troposphere is driven by different processes:

- Track1: Hack convection scheme (unrealistic)
- Track5: macro+micro (reflects new ice microphysics)

In the stratocumulus regions, there is an unrealistically large contribution from the shallow convection scheme in Track 1

Future work

Next, we will look at:

- the temperature, liquid and ice budgets
- forecast runs (CAPT framework):
 - understand how we attain this balance
 - allows direct comparison of the parameterized variables (e.g. clouds) with observations from field campaigns
- How do we use observations to help us understand the balances in the real world for these regimes, and achieve
 - similar balance in models?

