

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Problem: Searching for long-lived, weak chirps in noise

Curt Cutler

Problem: Searching for long-lived, weak chirps in noise

Examples from gravitational-wave searches

GW source: rapidly rotating neutron star with small, quadrupolar "mountain" (order 1 cm high)

GW source: inspiraling binary of two black holes

"Gravitational-wave pulsar" searches

Order of magnitude values

$$f \sim 300 \; Hz$$

$$T_{obs} \sim 1 \, yr \sim 3e7 \, s$$

$$\Rightarrow N_{cyc} \sim 10^{10}$$

$$\frac{h}{n} \sim 10^{-4}$$
 at any instant, so with matched filtering:

$$SNR \sim \frac{h}{n} \sqrt{N_{cyc}} \sim 10$$

Actually, blind all-sky searches are looking for signals with SNR ~ 20-25.

Parameter space and # of Templates

•Typically ~5-6 parameters: $\theta, \varphi, f_0, f_0, f_0$ (plus 4 others that are trivially searched over)

For all-sky searches for unknown, fast, young pulsar, number of templates to cover search space is

$$\sim 10^{22}$$
 This is # of FFTs

Comments

•To my knowledge, best current methods are semi-coherent and hierarchical (see talk by J. Rice)

 Observation: when template has decent (not great) overlap with imbedded signal, most of the SNR is "localized" in t-f space.

How 2 different chirping waveforms "interfere with" each other:

 $\int h_1(t)h_2(t)dt$ integral dominated by contribution

from short time around crossing of $f_1(t)$ and $f_2(t)$

t-f tracks for 2 merging NS binaries at different z

1st (simpler) version of proposed problem

1) Parameters are just: f_0 , f_0 , f_0 , f_0 , f_0 with

$$h = A \sin \varphi(t) \qquad \varphi(t) = f_0 t + \frac{1}{2} \dot{f} t^2 + \frac{1}{6} \dot{f}_0 t^3 + \frac{1}{24} \dot{f}_0 t^4$$

and A, T_{obs} adjusted to make simplest (grid of templates) matched-filtering search intractable.

2nd (harder) version of proposed problem

1) Few Parameters (~5): θ^i with

$$h = A\sin 2\pi \int f(t') dt' \qquad \frac{df}{dt} = F(f, \theta^i)$$

$$A = A(t, f(t), \theta^i)$$

with both f, A slowly varying, and T_{obs} adjusted to make simplest (grid of templates) matched-filtering search intractable.

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.