Computationally limited tasks in astronomy?

We would all testify to the growing gap between the generation of data and our *understanding* of it

Ian H. Witten & E. Frank, Data Mining, 2001

Giuseppe Longo

University Federico II in Napoli & California Institute of Technology

On behalf of the DAME team

The DPOSS/SDSS opened the way to a new methodology and defined what community expects from synoptic surveys

- SDSS was the right data set at the right moment.
 - Pioneeristic, yet, manageable with available technology (1 -- 10 TB of data products)
 - General in purpose, flexible enough to be useful for a large variety of existing problems, yet capable to rise new ones
- Both data products (e.g. catalogues) and raw data were «immediately» made available to the community
 - More than 3000 scientific papers came out of the Sloan (most of them from outside the core collaboration...
 - Some of these papers were from third world countries and/or from small groups working at small universities
 - Large number of small technological/methodological innovations (e.g. citizen science, large reliable KB's, etc.)
 - Triggered the Interest of KDD community in playing with a large, publicly available data set complex enough to be interesting from a ML point of view and not protected by any privacy/security issue

LHC like problems...

- LHC: among 10¹⁵ particle events find the only one of interest (Higgs boson)
- GW: find optimal algorithm(s) to detect a weak signal in an ocean of noise
- NEMO: among a huge number of events find those produced by high energy neutrinos
- Etc...

Synoptic sky surveys

In an ocean of complex data find those which are relevant for a huge variety of problems defined by a very large and heterogenous community

We want (need?) to save the SDSS «democratic» approach to the data

BUT

- Un-movable data sets
- Old data centers paradigm cannot be applied and ...
- Need for a large variety of «user defined» data products delivered by the data repositories to the final users

With LSST, Kepler, GAIA; Euclid, etc...

we have entered an era where:

- Most data ARE NOT seen by humans!
- Most knowledge hidden behind data complexity is potentially lost
- Most data (and data constructs) cannot be comprehended by humans directly!

Machine learning is no longer a viable option, it is a must...

- Data quality assessment
- ML aided data understanding
- Feature selection
- Data compression (delivery of specific products to the community and groups)
- Etc.

But ML is neither a simple nor an user friendly task

ML and KDD algorithms do not scale well with N and D

- Querying: spherical range-search O(N), orthogonal range-search O(N), spatial join $O(N^2)$, nearest-neighbor O(N), all-nearest-neighbors $O(N^2)$
- **Density estimation:** mixture of Gaussians, kernel density estimation $O(N^2)$, kernel conditional density estimation $O(N^3)$
- Regression: linear regression, kernel regression $O(N^2)$, Gaussian process regression $O(N^3)$
- Classification: decision tree, nearest-neighbor classifier $O(N^2)$, nonparametric Bayes classifier $O(N^2)$, support vector machine $O(N^3)$
- **Dimension reduction:** principal component analysis, non-negative matrix factorization, kernel PCA $O(N^3)$, maximum variance unfolding $O(N^3)$
- Outlier detection: by density estimation or dimension reduction O(N³)
- Clustering: by density estimation or dimension reduction, k-means, meanshift segmentation $O(N^2)$, hierarchical (FoF) clustering $O(N^3)$
- Time series analysis: Kalman filter, hidden Markov model, trajectory tracking O(Nn)
- Feature selection and causality: LASSO, L1 SVM, Gaussian graphical models, discrete graphical models
- 2-sample testing and testing and matching: bipartite matching $O(N^3)$, n-point correlation $O(N^n)$

Things are even worse if D is taken into account

Machine learning methods, in order to be effective need to be complex enough to capture the hidden knowledge

- Not methods, but workflows combining many methods
- Lenghty fine tuning is required
- Complex evaluation of results, with complex visualization issues, etc..

Computing intensive tasks in astronomy?

.... For a Data Miner it is a piece of cake....

- Every ML problem is potentially a data intensive one and can push to the limits any available HW and SW...
- We cannot move the data to the final users, but we need to move «user defined apps» where the data are (still a largely unexplored field in astronomy)
- Final users need to have «transparent» access to large computing facilities (better horses than chickens...)
- To implement effective ML methods we need to address a wide selection of «collateral problems» in parallelization of existing codes, visualization, benchmarking of algoriths, etc...

The DAME architecture

Topics I think should be addressed during the discussion (s):

- Standards for implementing «user defined» ML applications at the data repositories
- Visualization of complex data sets: what is available and what needs to be done.
- Template data sets for bench-marking of ML algorithms
- Identification of one or more «killer-like» problem (time domain) where to test the whole machinery

