Heirarchical Resolution

John Rice Lightning Talk

Nicolai Meinshausen, Peter Bickel, and John Rice. Efficient Blind Search: Optimal Power of Detection under Computational Cost Constraints[ANNALS OF APPLIED STATISTICS, Vol. 3, No. 1, 38-60, 2009]

Search Space

- •Consider no drift. Good frequency resolution depends on matching phase of photons at beginning and end of the record. If true frequency is f_0 , the number of cycles in time T is T/f_0 , so if the hypothesized frequency is $f = f_0 + \delta f$, δf should be $o(T^{-1})$ in order for a photon at the end of the record to be in phase with one at the beginning. The phase error at the end of the record is $T\delta f$.
- •10 days = 864,000 sec,- δf = T^{-1.} If a 40 Hz range has to be searched, a minimum of 40 x 864000 = 34,560,000 possible frequencies must be examined.
- •Similarly, drift must be resolved within o(T⁻²). To search the interval of possible frequency derivatives at this resolution, about 400-500 values must be examined.
- •Consequence is that a test statistic must be evaluated ~10⁹ values of frequency and its derivative.

Power Versus Computational Cost: Blocking

Power $\propto \theta^2 T$

f resolution $\propto T^{-1}$

 \dot{f} resolution $\propto T^{-2}$

Calculation of statistic for a single $(f,\dot{f}) \propto T$

 $\mathrm{FLOPS} \propto T^4$

Partition T into B blocks, compute statistic in each block and average:

Power $\propto \frac{\theta^2 T}{\sqrt{B}}$

FLOPS $\propto \frac{T^4}{B^3}$

Blocking Vela and Crab

Vela: 318 blocks

Crab: 25 blocks

Hierarchical Search

Maximize power subject to computational constraint. Optimal paths through resolution levels found by dynamic programming.

Refinement of search space (local)

Power versus cost

Simulation with 4 different signal strengths