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Cost-sensitive Learning
Cost: Computation? Time? Features?

Collaborative Analysis
Arrays, sensor networks

Anomaly Detection




Cost-Sensitive Learning (1)

» Selective computation based on cost

» Cost-sensitive decision tree (CSDT) [Ling et al., 04]

o Instead of maximizing information gain,
build tree to minimize cost of errors + cost of feature acquisition

o Speculatively: Decision tree nodes = computation, not just lookup

ssssss

High de-dispersion cost High misclassification cost

Signal Signal

(Response (Response
at DM=0) at DM=0)

High High

Parkes radio data
[Edwards et al., 01]

Non-pulse

Non-pulse

Pulse




Cost-Sensitive Learning (2)

» Cost-sensitive Feature Acquisition (CFA); cascade ensemble
[desJardins et al., 2010]

o Build a classifier using “free” features

o For poorly classified items, acquire another feature and train a new
classifier

o Continue until features exhausted or all items classified well

P(c/d)>6  P(c|dd,)>6 Plc|dd,d,) >0

o Minimizes acquisition cost while maintaining desired posterior prob.
o Also: reliable (abstaining) classifiers [Vanderlooy et al., 2009]




Collaborative Analysis (1)

» Ensemble: multi-station transient detection (VLBA)
Leverages differences in local RFI environments
Assumption: real transients will be detected by more than one station
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Collaborative Analysis (2)

» Independent: collaborative classification and clustering

o Learners bootstrap each other to higher performance
(like co-training, [Blum & Mitchell, 1998])

o Each learner queries neighbors for new data labels (or constraints),
shares the result, then retrains [Rebbapragada & Wagstaff, 2011]

Network Query Response

o Enables autonomous learning with minimal human effort
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Anomaly Detection

» SSEND: Semi-supervised Eigenbasis Novelty Detection
[Thompson et al., submitted]

o Project data into lower dimensional space (basis) and detect
anomalies by their reconstruction error

o Semi-supervised: include known uninteresting examples (e.g., RFI)
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