

Tracking 3D Ground Changes using Multi-Temporal Stereo Satellite Imagery

Sébastien Leprince, François Ayoub, Jiao Lin, B. Conejo, and Jean-Philippe Avouac

California Institute of Technology

Keck Workshop - June 17, 2014

COSI-Corr: Co-registration of Optically Sensed Images and Correlation

Satellite imagery acquired at different times, any resolution, possibly by different sensors

Measuring surface processes from optical imagery

COSI-Corr: a wide range of applications

The April 2010 El-Mayor Cucapah Earthquake, Mw 7.2

SPOT 5 images 2.5 m GSD

2009/05/26 2010/04/08

Images provided by
USGS
Rich Briggs
Ken Hudnut

Before/After Earthquake Imagery

Can you see the ground moving?

Before/After Earthquake Imagery

Can you see the ground moving?

Sub-Pixel Image Correlation: Locally Rigid Translations

Fourier Shift Theorem

$$i_2(x,y) = i_1(x - \Delta_x, y - \Delta_y)$$

$$I_2(\omega_x, \omega_y) = I_1(\omega_x, \omega_y)e^{-j(\omega_x \Delta_x + \omega_y \Delta_y)}$$

Normalized Cross-spectrum

$$C_{i_1 i_2}(\omega_x, \omega_y) = \frac{I_1(\omega_x, \omega_y) I_2^*(\omega_x, \omega_y)}{|I_1(\omega_x, \omega_y) I_2^*(\omega_x, \omega_y)|} = e^{j(\omega_x \Delta_x + \omega_y \Delta_y)}$$

Finding the relative displacement

$$\phi(\Delta_x, \Delta_y) = \sum_{\omega_x = -\pi}^{\pi} \sum_{\omega_y = -\pi}^{\pi} W(\omega_x, \omega_y) |C_{i_1 i_2}(\omega_x, \omega_y) - e^{j(\omega_x \Delta_x + \omega_y \Delta_y)}|^2$$

W weighting matrix. (Δ_x, Δ_y) such that ϕ minimum.

Horizontal Displacement Field from SPOT Imagery

Ground rupture well identified and recovered with 1/10 pixel accuracy (~25 cm)

Wei et al., Nature Geoscience, 2011

Horizontal Displacement using Worldview - 50 cm GSD

PB: large incidence angle bring topography residuals in parallax direction (here mostly Northward).

Solution: Use several images before and after the event.

Artifacts from CCD misalignment.

3D and 4D Processing Flow

1. Optimize Viewing Parameters

Optimize Viewing Parameters

Jointly optimize external parameters:

- roll, pitch, yaw angles: r(t), p(t), y(t)
- Spacecraft position in time x(t), y(t), z(t)
- 2nd order polynomials approximation
- If no GCP, regularized solution to stay within instrument uncertainties.

3D and 4D Processing Flow

1. Optimize Viewing Parameters

- Pairwise image matching between all images,
- Only keep tie-points on stable surfaces (e.g., bedrock),
- Optimize external viewing parameters of all images jointly using regularized bundle adjustment.

2. Produce Disparity Maps

Produce Disparity Maps

Given a stereo-pair of images (I_s, I_T) how to retrieve the disparity map d?

Image Matching Framework with Regularization

$$E(d) = E_M(I_S, I_T \circ (id + d) + E_R(d)$$

$$E_R(d) \approx \sum_{x \in I_S} \sum_{y \sim x} w(x,y) |d(x) - d(y)|$$
 Piecewise constant prior

Weighs the prior

Neighbors of pixel x

3D and 4D Processing Flow

1. Optimize Viewing Parameters

- Pairwise image matching between all images,
- Only keep tie-points on stable surfaces (e.g., bedrock),
- Optimize external viewing parameters of all images jointly using regularized bundle adjustment.

2. Produce Disparity Maps

- Project all images on reference surface (e.g. low res DTM, GTOPO or smoothed GDEM),
- Cross-correlate image pairs using multi-scale, regularized image correlation.

3. Produce Point and Vector clouds (3D, 4D)

Produce Point and Vector clouds (3D, 4D)

Triangulate multiple disparity maps to retrieve 3D topography and displacement fields

3D and 4D Processing Flow

1. Optimize Viewing Parameters

- Pairwise image matching between all images,
- Only keep tie-points on stable surfaces (e.g., bedrock),
- Optimize external viewing parameters of all images jointly using regularized bundle adjustment.

2. Produce Disparity Maps

- Project all images on reference surface (e.g. low res DTM, GTOPO or smoothed GDEM),
- Cross-correlate image pairs using multi-scale, regularized image correlation.

3. Produce Point and Vector clouds (3D, 4D)

- Triangulate disparity maps,
 - (x_1, y_1, z_1)
 - (x_2, y_2, z_2)
 - $(x_1, y_1, z_1, D_x, D_y, D_z)$
- Output surface models at all times.

3D and 4D Processing Flow

1. Optimize Viewing Parameters

- Pairwise image matching between all images,
- Only keep tie-points on stable surfaces (e.g., bedrock),
- Optimize external viewing parameters of all images jointly using regularized bundle adjustment.

2. Produce Disparity Maps

- Project all images on reference surface (e.g. low res DTM, GTOPO or smoothed GDEM),
- Cross-correlate image pairs using multi-scale, regularized image correlation.

3. Produce Point and Vector clouds (3D, 4D)

- Triangulate disparity maps,
 - (x_1, y_1, z_1)
 - (x_2, y_2, z_2)
 - $(x_1, y_1, z_1, D_x, D_y, D_z)$
- Output surface models at all times.

4. Grid Point Clouds and Vector Clouds

Use standard gridding libraries on each components (only external processing).

El-Mayor Cucapah EQ, 2010, 3D displacement field

Pre-earthquake images:

- Quickbird 09/21/2006,
 Along-track angle -1.23°
 Across-track angle -9.8°
- Worldview 09/16/2008,
 Along-track angle -10.8°
 Across-track angle 13.5°

Post-earthquake images:

- Worldview 04/10/2011,
 Along-track angle -13.8°
 Across-track angle -22.5°
- Worldview 05/19/2011,
 Along-track angle 14.1°
 Across-track angle 21.6°

El-Mayor Cucapah EQ, 2010, 3D displacement field

El-Mayor Cucapah EQ, 2010, 3D displacement field

CCD and jitter artifacts largest source of bias

Multi-temporal Stereo Acquisitions using Worldview GSD 50 cm:

- **January 30, 2013** (x2)
- **February 9, 2013** (x2)
- **February 28, 2013** (x2)

- Bundle adjustment between all images,
- Multi-scale image matching due to large disparities (up to 1000 pixels),
- Regularized matching because of occlusions

3D motion between January 30 and February 9, 2013

Measurements with intersection errors larger than 2m (20cm/day) have been removed (white areas).

3D motion between January 30 and February 9, 2013

Measurements with intersection errors larger than 2m (20cm/day) have been removed (white areas).

1m GSD Shaded Elevation Model generated from stereo pair:

January 30, 2013

1m GSD Shaded Elevation Model generated from stereo pair:

February 9, 2013

1m GSD Shaded Elevation Model generated from stereo pair:

February 28, 2013

Extracting Urban Topography

Automatic Mapping of Disasters with Stereo Imagery

200

City of Moore, Oklahoma, bftferrtotronardaglo2,0210312

Automatic Mapping of Disasters with Stereo Imagery

Digital Surface Model - City of Moore, Oklahoma, bftferreotronardeo, 02,02031.2

Conclusions

- Rigorous methods to measure 3D ground deformation using remote sensing are becoming more popular,
- Generic methods to monitor a variety of surface processes (fault rupture, landslides, sand dune migration, glaciers, etc.),
- How can these new techniques help address the most pressing science questions?
- How should they be modified to best answer science questions? What are the main limitations?
- Would there be a need to develop new instruments?

