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Designh and Experiments with Two Robotic Systems
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Abrasion resistant jacket

26 AWG unshielded
twisted pair (x5)
18 AWG power

. 4-/ conductor (3)

26 AWG co-axial
conductor

Kevlar fibers
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Rappelling Concept

Tether tension adjusted
to eliminate shear
forces, distribute normal
forces

Large downhill
leg shearing &
normal forces




Rappelling Limitations

Downward

Upwards tether
pull tends to
destabilize

tether pull
increases uphill
leg loading




Rappelling Limitations
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fall-line

Restoring force
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Mount Spurr Stats

Distance travelled 276m
Number of steps 2900
Number of laser scans 70
Average and steepest slope 32, 40 deg
Cross slope range 20-35 deg
Days of unattended operation 5
Typical power draw (robot and rim equip) 2 KW
Satellite bandwidth (robot to ctrl station) 1 Mb/s
% Distance using behavioral control 15%
% Distance using teleop w/3D interface 75%




Results and Lessons

*Rappelling can work

*Anchoring limits maneuvering
and imposes forces

*Constant oversight
(teleoperation) is impractical

*Reflexes and behaviors enable
autonomy

*Self-righting is systemic
requirement

eHarsh field experiments drive
program (80/20)







Specifications

Mass (w/o payload): 280 kg

Weight: 460 N ) 2750 N®

Power (driving): 200 W (peak) @

Power (posing): 380 W (peak) @

Power (idle): 78 W

Speed: 5.0 cm/s (6.0 cm/s max)

Height (with drill tower): 2.2 m high stance, 1.6 m low stance
Width (wheelbase): 1.4 m

Length (wheelbase): 0.8 - 1.4 m

Aspect (track/wheelbase): 1:1 low, 1:1.2 nom, 1:1.7 high
Wheel diameter: 60 cm

Straddle: 57 cm max, 0 cm min




Scarab Dimensions

.<—175cm —>‘

*nominal
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*low

*high
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ISRU/RESOLVE Integration
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ISRU/RESOLVE Support

«Steep Slope Ascent, 20 ° ash *Utilize *Build 3D Maps
*Crater access for assay LIDAR 25 drill sites x 1km distribution
*Traversability Analysis

‘Remote Operations (PTOC) *Deployment achieved by *Low risk dri!lipg operations for
and Control of Scarab lowering chassis to ground rover and drilling system




Scarab Objectives

Mobility

Achieve mobility for lunar-crater analog terrain
Evaluate the performance of lunar-relevant wheels
avigation

Exhibit dark navigation
or polar scenarios







Scarab Experiment

Mobility
Measure: Tractive capability
Variable: Payload mass
Soil properties (size, cohesion




Scarab Experiment

Mobility

Measure: Slope
capability

Variable: Slope angle
Angle of ascent

Soil properties (size, cohesion)




Scarab Experiment

Navigation

Measure: Drill emplacement, precise positioning of
drill on designated site

Variable: Distance traveled
Terrain complexity
Position accuracy




Scarab Experiment

Navigation
Measure: Long distance dark navigation
Variable: Distance travel
Terrain complexity
Fault modes

Terrain model
fidelity




Static Tip-Over Angles

51

(values from tilt-table testing)

Carnegie Mellon © 2009




Mobility - Steep Slope Ascent

Active Body Roll
*Ascend at ~25-45° angle of attack

Better distributes pressure amongst wheels

*Can eliminate effect of slope

Conventional Ascent
*Ascend straight up (or angled)

Inchworming

*Peristaltic motion utilized to reduce soil motion resistance

*Resistance eliminated in 2 of 4 wheels leads to net traction
IEGEERE

Cyclic raising/lowering, increase/decrease of wheelbase
results in motion




Leaning posture at 20°




Cross-slope paths at 20°

Level posture Leaning posture




Test Procedure

Measurement Equipment

Surveying Total Station
e Tracks rover mounted prism for
X-y-z location and slip measurement

Site Parameters
Soil Samples = characterize mechanical properties
Slope measurement
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Slope-Bed Results

2.75 m straight cross- slope
traverse commanded

Slope
Angle

Downbhill Slip

Level
Posture

Leaning
Posture

Slip
Difference

-Downhill slip recorded as
percentage of horizontal

10°

6%

2%

-4%

distance attempted

15°

22%

8%

-14%

Leaning into slope
significantly reduces downhill
slip

20°

37%

15%

-22%




Mobility - Slope Ascent = "l W -

,'?:Testlng Multiple Technlques
~» Direct uphillascent: = *
-» Center-of mass shlftlng and

varyiflg angle of ascent
* Inchworming . '

Nine Site Categories |
e Varying slope angle and soil strength

Heavy Payload mobility
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Mobility - Steep Slope Ascent

Measured Performance Power* for Maneuver

Soil Strength Direct | Active | Inchworm

Power of CoM

Locomotion Shift**
10

15
20
Medium 10
15
20

Medium Strength, | 20
Heavy Payload

High 10
15
20

*Locomotion power (48V Bus)

**~25° angle of attack




Mobility - Steep Slope Ascent

Slope climb ability with Active CoM (center of mass) Shifting
e 28°, medium strength soil, 18% Slip
e 20°, loose soil, 65% slip, 177W locomaotion
e 20°, Fine Volcanic Ash, Climbing ability with Lunar Wheel
 Switch-back method to continuously ascend 20" demonstrated
e 25 - 30" Angle of attack for high slope angles

Slope climb ability with conventional unleveled posture
e 20°, medium strength soil, 45% slip, 170W
e Unable to ascend 20°, low strength soil

Average Power 130-170W, no significant differences

Inchworming climbing technique did not have as favorable results as active
CoM shifting.

- Use Inchworming as secondary (alternative) if straight ascent required
(33% less slip than conventional uphill ascent)




Dark Navigation




Dark Navigation

Polar craters require active sensing and navigation in
total darkness

Goals
e Multiple 1Tkm continuous autonomous traverses
* Rough terrain navigation
e Linear Velocity Camera test and demonstration

Methods
e Evaluative and Geometric Navigation Algorithms
* TriDAR Laser Scanner
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Dark Navigation Results

Moses Lake
B Mauna Kea

Moses Lake Mauna Kea
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Model of Crater Descent







Results and Lessons

*Posture control to enhance
stability

Significant slope
performance without tether

*Modeling 3D terrain for
navigation is feasible

*Planning ascent/descent
currently difficult

Slip prediction and control is
a challenge




Results and Lessons

*Rappelling can work

*Anchoring limits maneuvering
and imposes forces

*Constant oversight
(teleoperation) is impractical

*Reflexes and behaviors enable
autonomy

*Self-righting is systemic
requirement

eHarsh field experiments drive
program (80/20)







