Accessing Craters

Design and Experiments with Two Robotic Systems

David Wettergreen

The Robotics Institute
Carnegie Mellon University

Rappelling Concept

Large downhill leg shearing & normal forces

Tether tension adjusted to eliminate shear forces, distribute normal forces

Rappelling Limitations

Upwards tether pull tends to destabilize

Downward tether pull increases uphill leg loading

Rappelling Limitations

Restoring force

Operational Contexts

Control Function	Indiv. Actuator Context	Frame Context	Behavior Context	Gait Context	Path Context
Servo tether					
Coordinate leg motions					
Maintain body height					
Maintain posture					
Adjust leg step					
Surmount obstacles					
Perceive terrain					
Determine step height					
Determine body height	Operator Control			Automatic Control	
Determine posture					
Determine stride					
Correct leg placement	1				
Generate path					
Determine heading					
Avoid obstacles					

Carnegie Mellon © 200

Descending in Mount Spurr

Autonomous: 0.49m/min, Teleop: 0.22m/min

Mount Spurr Stats

Distance travelled	276m
Number of steps	2900
Number of laser scans	70
Average and steepest slope	32, 40 deg
Cross slope range	20-35 deg
Days of unattended operation	5
Typical power draw (robot and rim equip)	2 kW
Satellite bandwidth (robot to ctrl station)	1 Mb/s
% Distance using behavioral control	15%
% Distance using teleop w/3D interface	75%

Results and Lessons

- Rappelling can work
- Anchoring limits maneuvering and imposes forces
- Constant oversight (teleoperation) is impractical
- Reflexes and behaviors enable autonomy
- Self-righting is systemic requirement
- Harsh field experiments drive program (80/20)

Specifications

Mass (w/o payload): 280 kg

Power (driving): 200 W (peak) \oplus

Power (posing): 380 W (peak)

Power (idle): 78 W

Speed: 5.0 cm/s (6.0 cm/s max)

Height (with drill tower): 2.2 m high stance, 1.6 m low stance

Width (wheelbase): 1.4 m

Length (wheelbase): 0.8 - 1.4 m

Aspect (track/wheelbase): 1:1 low, 1:1.2 nom, 1:1.7 high

Wheel diameter: 60 cm

Straddle: 57 cm max, 0 cm min

Scarab Dimensions

ISRU/RESOLVE Integration

ISRU/RESOLVE Support

- Steep Slope Ascent, 20 ° ashCrater access for assay
- UtilizeLIDARTraversability Analysis

Build 3D Maps25 drill sites x 1km distribution

- Remote Operations (PTOC) and Control of Scarab
- •Deployment achieved by lowering chassis to ground
- •Low risk drilling operations for rover and drilling system

Scarab Objectives

Mobility

Achieve mobility for lunar-crater analog terrain

Evaluate the performance of lunar-relevant wheels

Navigation

Exhibit dark navigation for polar scenarios

Mobility

Measure: Tractive capability

Variable: Payload mass

Soil properties (size, cohesion)

Mobility

Measure: Slope capability

Variable: Slope angle

Angle of ascent

Vehicle posture

Soil properties (size, cohesion)

Navigation

Measure: Drill emplacement, precise positioning of

drill on designated site

Variable: Distance traveled

Terrain complexity

Position accuracy

Navigation

Measure: Long distance dark navigation

Variable: Distance travel

Terrain complexity

Fault modes

Terrain model fidelity

Static Tip-Over Angles

Active Body Roll

- •Ascend at ~25-45° angle of attack
- •Better distributes pressure amongst wheels
- •Can eliminate effect of slope

Conventional Ascent

Ascend straight up (or angled)

Inchworming

- •Peristaltic motion utilized to reduce soil motion resistance
- •Resistance eliminated in 2 of 4 wheels leads to net traction increase
- •Cyclic raising/lowering, increase/decrease of wheelbase results in motion

Cross-slope paths at 20°

Level posture

Leaning posture

Test Procedure

Measurement Equipment

Surveying Total Station

 Tracks rover mounted prism for x-y-z location and slip measurement

Site Parameters

Soil Samples -> characterize mechanical properties Slope measurement

Tilt-Bed at 10° Slope

Tilt-Bed at 15° Slope

Tilt-Bed at 20° Slope

Slope-Bed Results

- •2.75 m straight cross- slope traverse commanded
- •Downhill slip recorded as percentage of horizontal distance attempted
- Leaning into slope significantly reduces downhill slip

Downhill Slip

Slope Angle	Level Posture	Leaning Posture	Slip Difference
10°	6%	2%	-4%
15°	22%	8%	-14%
20°	37%	15%	-22%

		100		1	800
IVI	05	10	IIK	01	
IVI	CC	as			
		ALCOHOLD A		o g	
0	1		2	1000	8
S	I ta	1	NO RE	-36	
A STATE OF		200			
	100000	S.ALJE	3 3 3	15 S. S. S.	32.5

Performance		Wheel		
Soil Strength	Slope Angle	Rubber	Lunar	Lunar with grouser
Low Strength, Loose Dry, Volcanic Ash	20°	10 30	80 70	37
Low Strength, Compacted Dry, Volcanic Ash	15°	10	30	20
High Strength, Compacted rock field	7 °	18	18	

^{*}slip in commanded direction

Measured Power of Locomotion

Performance		Power* for Maneuver		ıver
Soil Strength	Slope Angle	Direct	Active CoM Shift**	Inchworm
Low	10			-
	15			-
	20	165W	177W	_
Medium	10			-
	15	140W	130W	TBD
	20	170W	175W	TBD
Medium Strength, Heavy Payload	20	-		-
High	10		125W	-
	15			-
	20			-

^{*}Locomotion power (48V Bus)

^{**~25°} angle of attack

Slope climb ability with Active CoM (center of mass) Shifting

- 28°, medium strength soil, 18% Slip
- 20°, loose soil, 65% slip, 177W locomotion
- 20°, Fine Volcanic Ash, Climbing ability with Lunar Wheel
- Switch-back method to continuously ascend 20° demonstrated
- 25 30° Angle of attack for high slope angles

Slope climb ability with conventional unleveled posture

- 20°, medium strength soil, 45% slip, 170W
- Unable to ascend 20°, low strength soil

Average Power 130-170W, no significant differences

Inchworming climbing technique did not have as favorable results as active CoM shifting.

→Use Inchworming as secondary (alternative) if straight ascent required (33% less slip than conventional uphill ascent)

Dark Navigation

Dark Navigation

Polar craters require active sensing and navigation in total darkness

Goals

- Multiple 1km continuous autonomous traverses
- Rough terrain navigation
- Linear Velocity Camera test and demonstration

Methods

- Evaluative and Geometric Navigation Algorithms
- TriDAR Laser Scanner

Dark Navigation Results

	Moses Lake	Mauna Kea
Reached Goal	3	8
Operator Interupt	5	6
Software Bug	6	3
Sensor Fault	5	0
Operator Error	2	0
Bus Fault	2	1
Recoverable Fault	15	4
Impassible Terrain	2	2
Emergency Stop	0	0
	25	20

Model of Crater Descent

Results and Lessons

- Posture control to enhance stability
- Significant slope performance without tether
- Modeling 3D terrain for navigation is feasible
- Planning ascent/descent currently difficult
- Slip prediction and control is a challenge

Results and Lessons

- Rappelling can work
- Anchoring limits maneuvering and imposes forces
- Constant oversight (teleoperation) is impractical
- Reflexes and behaviors enable autonomy
- Self-righting is systemic requirement
- Harsh field experiments drive program (80/20)

