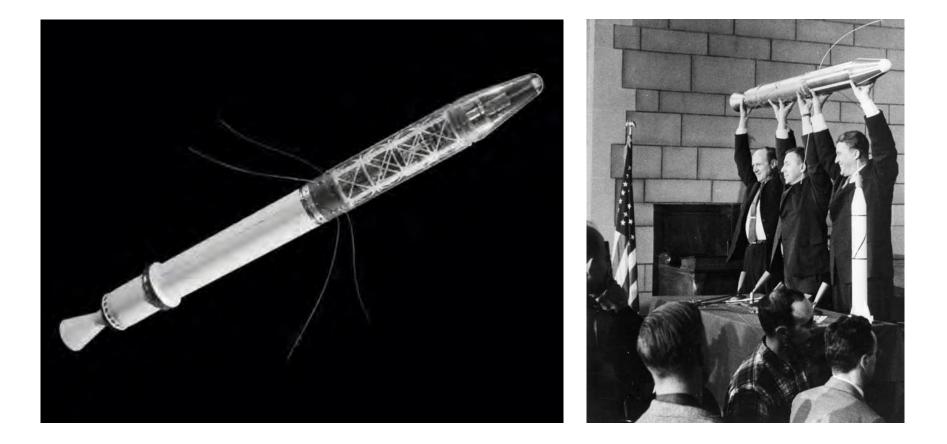
Interplanetary CubeSats and Smallsats for Lunar Exploraton


Keck Institute for Space Studies (KISS) Workshop on New Approaches to Lunar Ice Detection and Mapping 2013 July 22 California Institute of of Technology, Pasadena, California

Presented by Robert L. Staehle Jet Propulsion Laboratory, California Institute of Technology <u>Authors</u> listed in slides 3 through 8 from previously presented material.

© 2013 California Institute of Technology. U.S. Government sponsorship acknowledged.

Explorer 1 - JPL's Origins in Small Spacecraft

Explorer 1 – First US Satellite - Launched on January 31, 1958 – Cape Canaveral, FL

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

Courtesy: JPL Photo Archives

Interplanetary CubeSat Architecture and Missions

Space 2012 American Institute of Aeronautics & Astronautics (AIAA) 2012 September 12 Pasadena, CA

Robert L. Staehle, Diana Blaney, Hamid Hemmati, Dayton Jones, Andrew Klesh, Joseph Lazio, Paulett Liewer, Martin Wen-Yu Lo, Pantazis Mouroulis, Neil Murphy, Paula J. Pingree, Thor Wilson, Chen-Wan Yen Jet Propulsion Laboratory, California Institute of Technology

Jordi Puig-Suari, Austin Williams California Polytechnic University, San Luis Obispo

Tomas Svitek Stellar Exploration

Bruce Betts, Louis Friedman The Planetary Society

Brian Anderson, Channing Chow University of Southern California Report on Phase 1 of a NASA Innovative Advanced Concepts (NIAC) task. No mission described herein has been approved or funded.

© 2012 California Institute of Technology. U.S. Government sponsorship acknowledged. Published by AIAA with permission.

Pre-decisional – for planning and discussion purposes only

JPL Does Cubesats

Tony Freeman* Manager, Innovation Foundry

April 2013

With a lot of help from the Cubesat Kitchen Cabinet:
C. Norton (3X/8X), J. Baker (4X/6X), A. Gray (7X), L. Deutsch (9X)

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

Utilization of a Solar Sail to Perform a Lunar CubeSat Science Mission

2nd Interplanetary CubeSat Workshop Ithaca, New York May 28-29, 2013

The University of Texas at Austin (UT): Texas Spacecraft Laboratory (TSL)Peter Z. SchulteUndergraduate Research AssistantE. Glenn LightseyProfessorKatharine M. BrumbaughGraduate Research Assistant

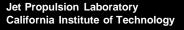
Jet Propulsion Laboratory, California Institute of Technology (JPL)Robert L. StaehleAssistant Manager for Advanced Concepts, Instruments Division5

INSPIRE

<u>Interplanetary NanoSpacecraft Pathfinder In a Relevant Environment</u>

Low-cost mission leadership with the world's first CubeSat beyond Earth-orbit

PI: Dr. Andrew Klesh, Jet Propulsion Laboratory, California Institute of Technology PM: Ms. Lauren Halatek, Jet Propulsion Laboratory, California Institute of Technology


University Partners:

- U. Michigan Ann Arbor
- Cal Poly San Luis Obispo
- U. Texas Austin

Collaborator:

• Goldstone-Apple Valley Radio Telescope (GAVRT)

A Low-Cost NEO Micro Hunter-Seeker Mission Concept

A \$100M micro-mission to discover and visit multiple near-Earth objects

Joseph E. Riedel, Colleen Marrese-Reading, & Young H. Lee Jet Propulsion Laboratory, California Institute of Technology, joseph.e.riedel@jpl.nasa.gov

> With critical contributions from David Eisenman, Dan Grebow, Tim McElrath and Juergen Mueller

Low Cost Planetary Missions – 10 Conference, June 19 2013 Copyright 2013, all rights reserved

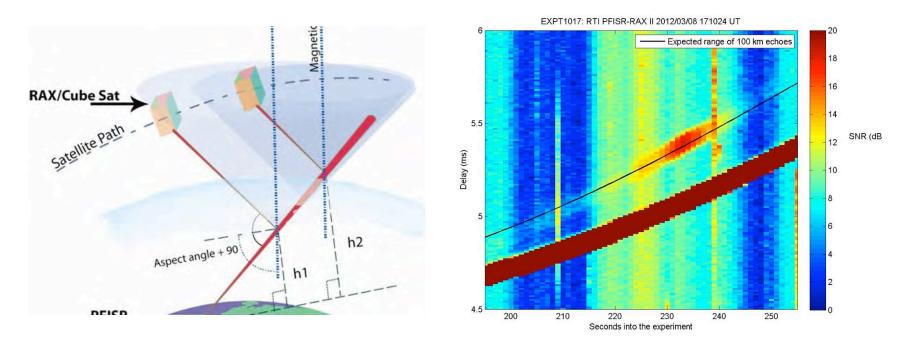
The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech

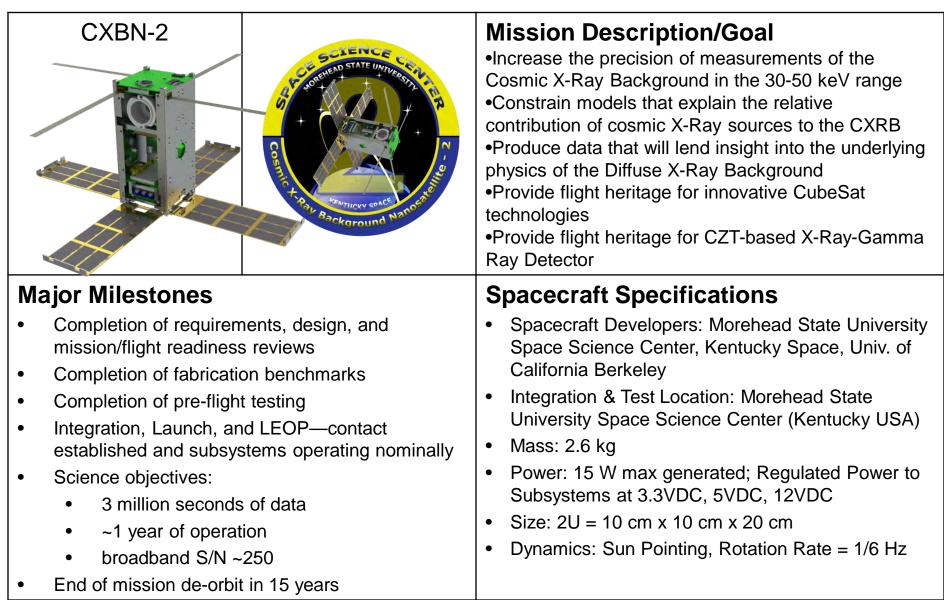
Morehead State University SmallSat Program

Benjamin Malphrus Space Science Center Morehead KY

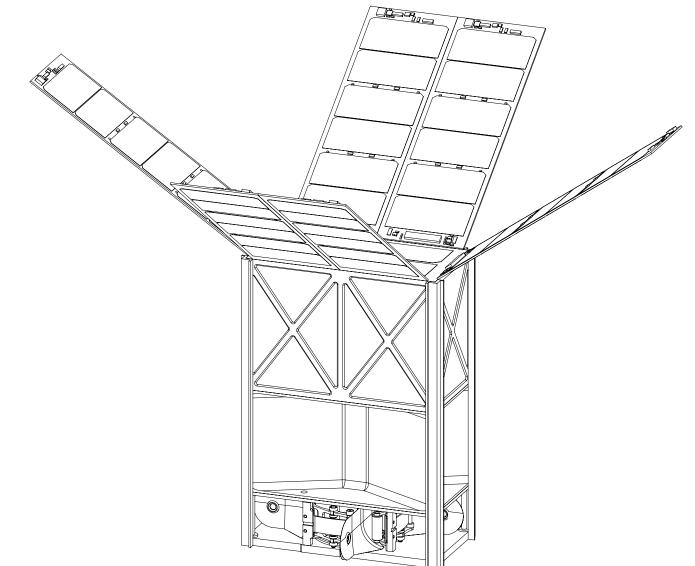
What is a CubeSat?

- A CubeSat is an accepted standard to enable low-cost launch access at the price of higher risk – but not to the primary (encapsulation of risk)
- A CubeSat is a flexible platform without defined "innards"
- A CubeSat is an instrument with a few spacecraft parts tacked on.
- A CubeSat allows for low-cost if the project accepts higher risk


A CubeSat is a focused tool, trading capability for size, and maximizing utility through acceptance of risk.


CubeSats – Inside the Box

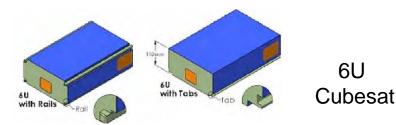
- 10 years orbiting in LEO
- Currently >50 launches per year
- Have developed significant capability for science return

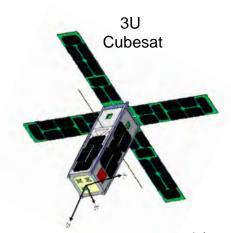


The RAX radar echo discovery has convincingly proved that miniature satellites, beyond their role as teaching tools, can provide high caliber measurements for fundamental space weather research.

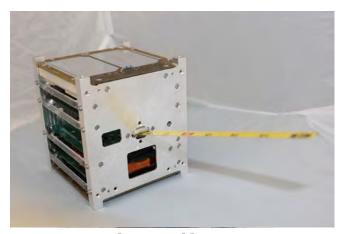
- Dr. Therese Moretto Jorgensen, Geospace program director, Division of Atmospheric and Geospace Sciences, NSF Cosmic X-Ray Background Nanosatellite-2 Morehead State University and Kentucky Space

One Preliminary Configuration

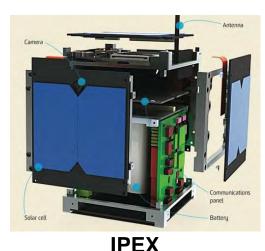

Tomas Svitek, 2012/3/17

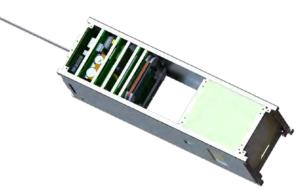

Why Cubesats? Why Now?

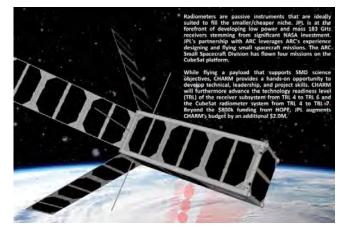
- Cubesats have been around since 1999
- They have been through a lengthy 'Sputnik' period
- Cubesat spacecraft capabilities have advanced...
- And they are now at their 'Explorer-1' moment:
 - 2009 JPL begins technology validation payloads (Earth Science)
 - 2010 U. Mich Radio Aurora Explorer (Heliophysics)
 - 2011 Rob Staehle (JPL) Interplanetary cubesat NIAC study funded
 - 2014 MIT/Draper Labs Exoplanetsat cubesat (Astrophysics)
 - 2014 MIT/LL MicroMAS cubesat radiometer (Earth Science)
 - 2014 JPL RACE/CHARM μ wave radiometer (Earth Science)
 - 2 interplanetary cubesat conferences
 - Cubesat ideas proposed to Mars program at recent LPI event
 - CubeSat ideas explored for Outer Planet missions (Europa)
 - 2014 JPL's proposed INSPIRE could be the first cubesat to fly beyond Earth orbit (we think)
- Cubesats beyond Earth orbit would be an obvious next step for JPL

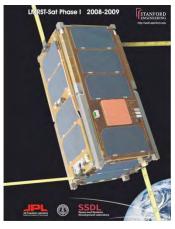

Cubesat Capabilities have advanced

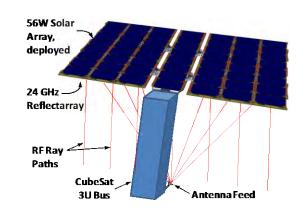
- Position and Attitude Determination and Control
 - Active systems using reaction wheels, torquers, and sun sensors have provided <0.2 deg RMS
 - 3-sigma 2.3 arcsecond pointing has been demonstrated in lab
 - Position knowledge typically obtained by NORAD TLEs, or occasionally GPS
- Propulsion
 - 20 m/s cold gas systems have flown
 - JPL is developing a small (0.5-1U) propulsive stage (MEP) that could provide ~1 km/sec
- Command, Communications and Control
 - Microcontrollers (especially the MSP430, PIC and Atmel chips) have primarily been flown, Linuxbased computers, ARM chips, and now FPGAs have all been demonstrated.
 - UHF L3 transceiver or Software Defined Radio >1.5 Mbps
- Power
 - Several deployable solar array configurations, capable of providing up to 50 W average
- Structure
 - CubeSat structure is driven by the dispenser design
 - Currently only 3U dispensers exist; expect 6U flight demo in 2013 or later




JPL is Already in the CubeSat Business


M-Cubed/COVE High data-rate on-board processing P. Pingree: JPL, U. Michigan


Autonomous low-latency product generation S. Chien: JPL, GSFC, Cal Poly SLO



GRIFEX Unprecedented frame-rate ROIC/FPA D: Rider JPL, U. Michigan

RACE 183 GHz radiometer for precipitation science

LMRST* **ISARA*** Deep Space Radio Transponder Integrated Solar Array & Reflectarray Antenna B. Lim: JPL, UT Austin *Proposed Mission - Pre-Decisional – for Planning and Discussion Purposes Only Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

Six Technology Challenges

4. Navigation

1. Interplanetary environment

- Getting to cubesats Interplanetary Launch off C₃>0 ~ballistic traj

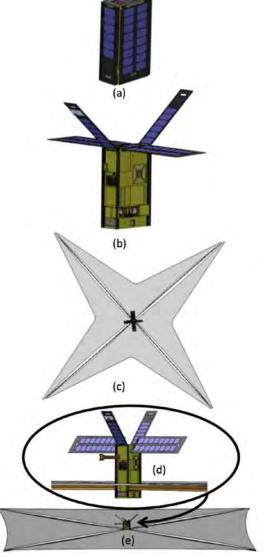
 - Depart from "Mothership", • 10s to 100s m/sec
 - Companion
 - Orbiter
 - Lander
 - Impactor
 - Self-propelled 1 - 10 km/sec/yr
 - Electric
 - Solar Sail

2. Telecommunications

3. Propulsion (where needed)

•

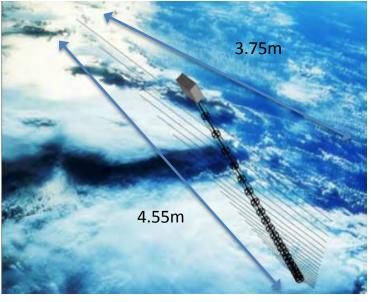
6. Maximizing


downlink info content

5.Instruments

A Workable Interplanetary CubeSat System Architecture emerges from the maturation of six key technologies

LightSail 1tm: Planetary Society, Stellar Exploration, CalPoly-SLO RAX-2: University of Michigan


JPL is Already in the CubeSat Business

INSPIRE*

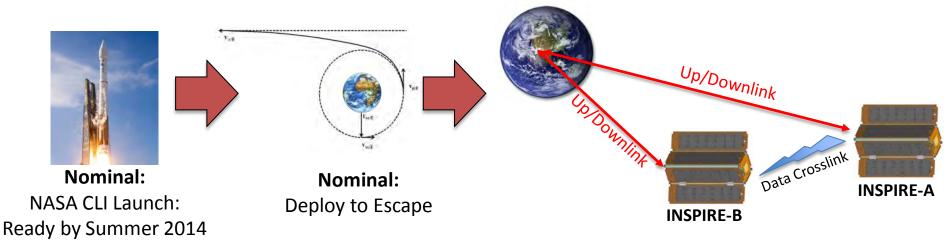
Interplanetary Nano-Spacecraft Pathfinder in Relevant Environment A. Klesh: JPL, U. Michigan, UT Austin, Cal Poly SLO

CHIRP*

CubeSat very high frequency transmitter to study Ionospheric transmission of Radio Pulses A. Romero-Wolf: JPL

*Proposed Mission - Pre-Decisional – for Planning and Discussion Purposes Only Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

INSPIRE

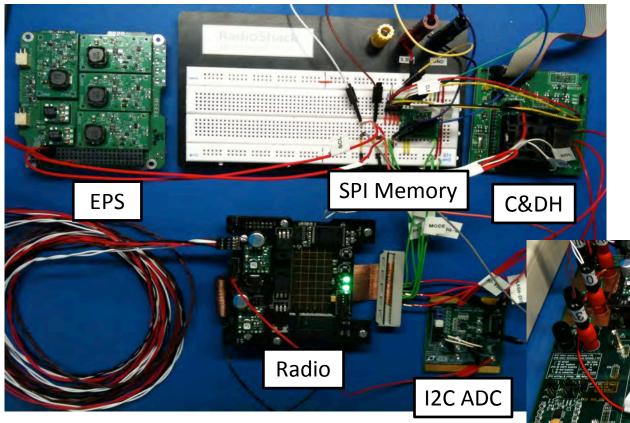

INSPIRE would enable a new class of interplanetary explorer, while providing components to reduce the size and cost of traditional missions

Mission Objectives

- Demonstrate and characterize key nano-spacecraft telecommunications, navigation, command & data handling, and relay communications for mother-daughter
- Demonstrate science utility with compact science payload (1/2U Helium Vector Magnetometer and Imager)
- Demonstrate ability to monitor and power cycle COTS/university processing systems

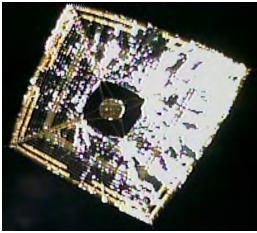
Mission Concept

 JPL-built spacecraft; collaborative partnerships with Michigan, Texas, and CalPoly/Tyvak for COTS processing systems. Ground stations at U. Michigan and Goldstone with DSN compatibility

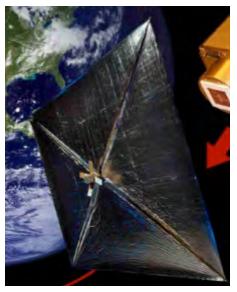


Current INSPIRE Development

Current Status:

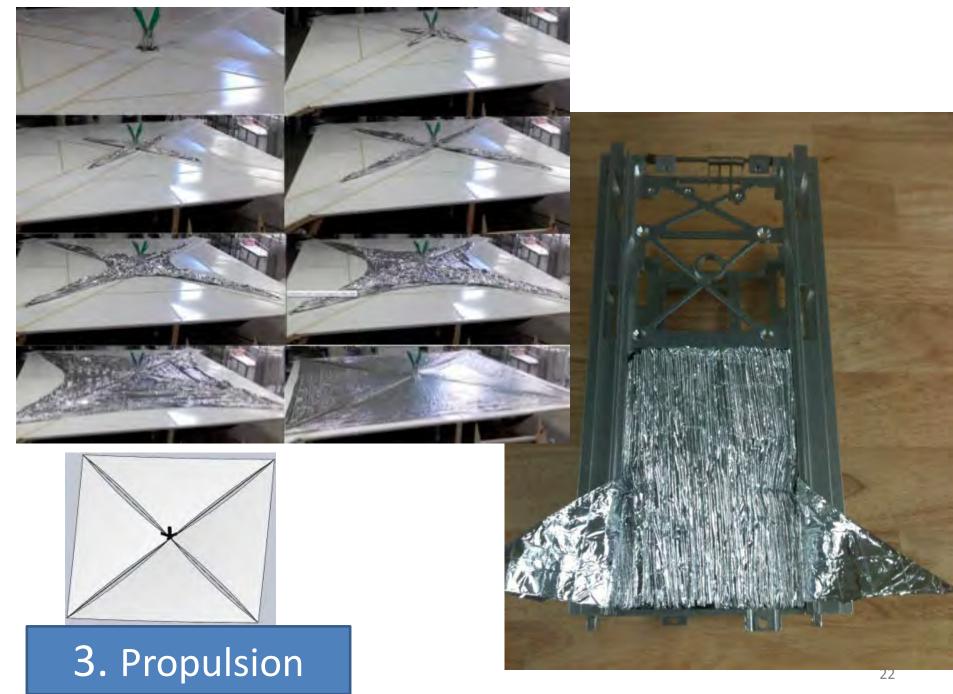

- Selected by the CubeSat Launch Initiative awaiting manifest
- Prototype units are arriving at JPL (with interns). Characterization and integration is ongoing.
- 3 operating "Flat-Sats" for development and testing
- Approximately 10 months until launch ready

FlatSat in initial stack on development board



Solar Sail Technology

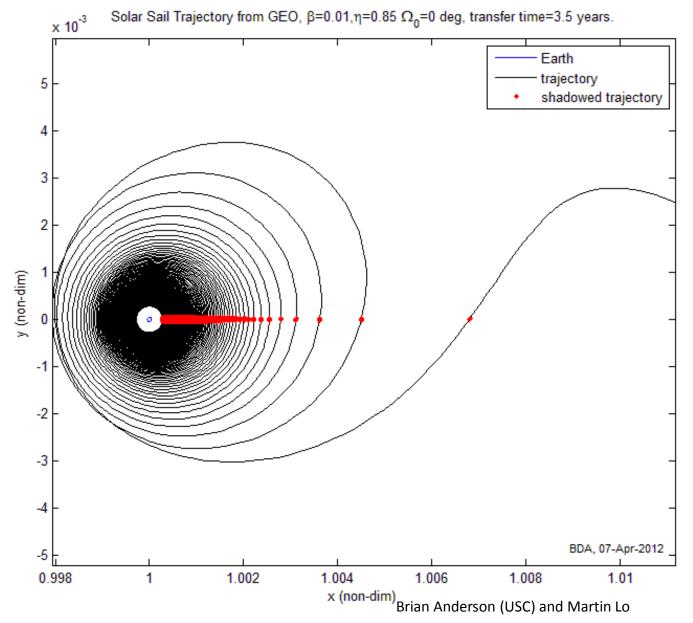
- Constant low-thrust propulsion with reduced mass and limited propellant use
- Several 400 m² sails have been deployed on the ground in demonstrations by NASA and DLR¹
- Recent and upcoming Earth-orbiting solar sail technology demonstration flights²⁻⁴:



IKAROS Spacecraft (JAXA)²

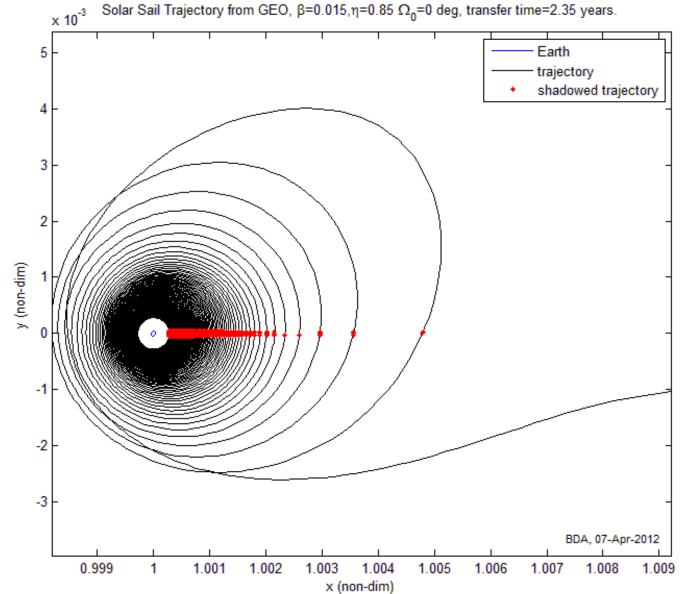
NanoSail-D2 Spacecraft (NASA)³

Name	Organization	Sail Size	Date	Spacecraft
IKAROS	JAXA	200 m ²	June 2010	Custom
NanoSail-D2	NASA/AFRL	10 m ² January 2011		3U CubeSat
CubeSail	NASA/CU Aerospace/ Univ. of Illinois	25 m ²	Planned 2013	3U CubeSat
DeOrbitSail	Univ. of Surrey	25 m ²	Planned 2014	3U CubeSat
LightSail [™] -1	Planetary Society	32 m ²	Planned 2015	3U CubeSat


Solar Sail Earth Escape Trajectories from GEO

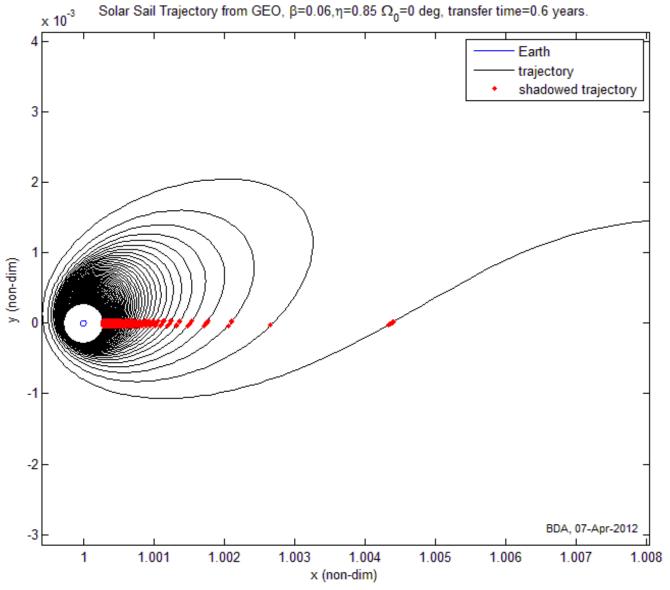
- Sail at 85% Efficiency
- 5.6m sail at 4.6 kg
- 10m & 20m sail at 10 kg
- Benefits of lunar gravity assist not accounted

...if you can't find a ride to Earth escape or better


Brian Anderson (USC) and Martin Lo

Earth Escape 5.6m Solar Sail, 3.5 Yrs.

Pre-decisional – for planning and discussion purposes only


Earth Escape 10m Solar Sail, 2.35 Yrs

Brian Anderson (USC) and Martin Lo

Pre-decisional – for planning and discussion purposes only

Earth Escape 20m Solar Sail, 0.6 Yrs.

Brian Anderson (USC) and Martin Lo

Concept of Operations

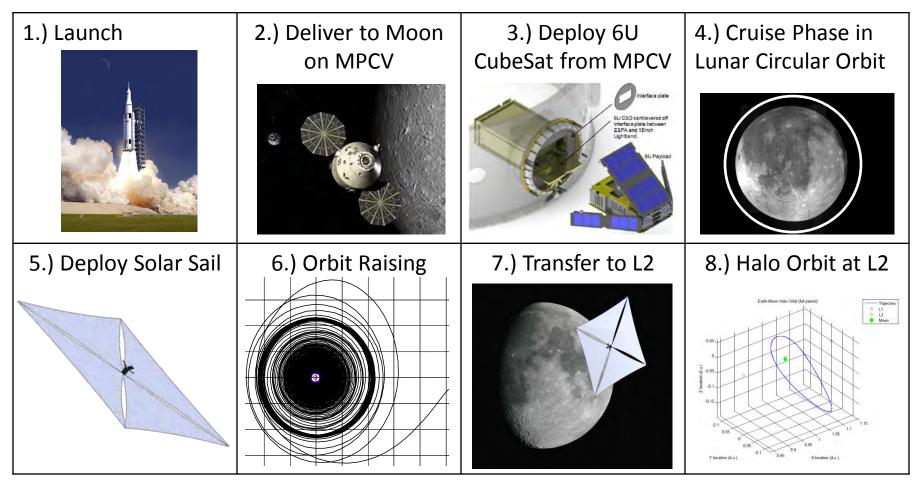
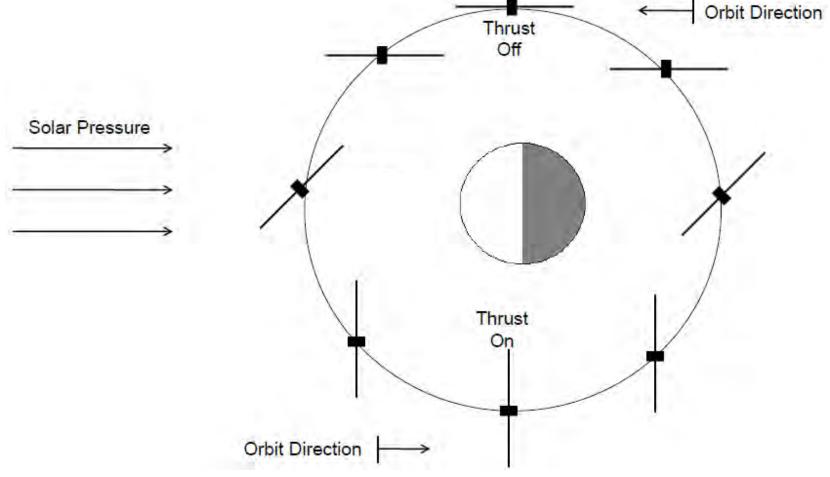
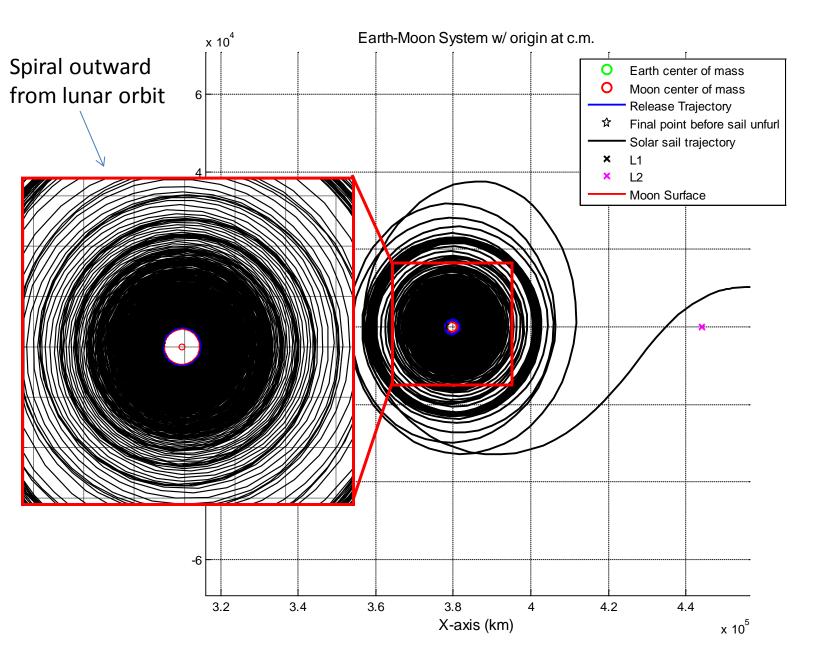



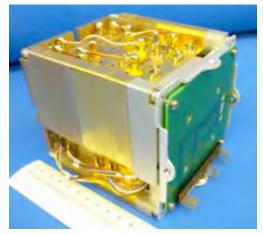
Image Sources: Panels 1,2, and 4 - various public NASA websites. Panel 3 - Canisterized Satellite Dispenser Data Sheet, p. 15, Planetary Systems Corporation website, <u>http://www.planetarysystemscorp.com/#!</u> downloads



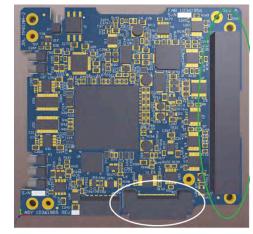
Solar Sail Thrust Control

- •Thrust off when moving toward Sun
- •Thrust on when moving away from Sun

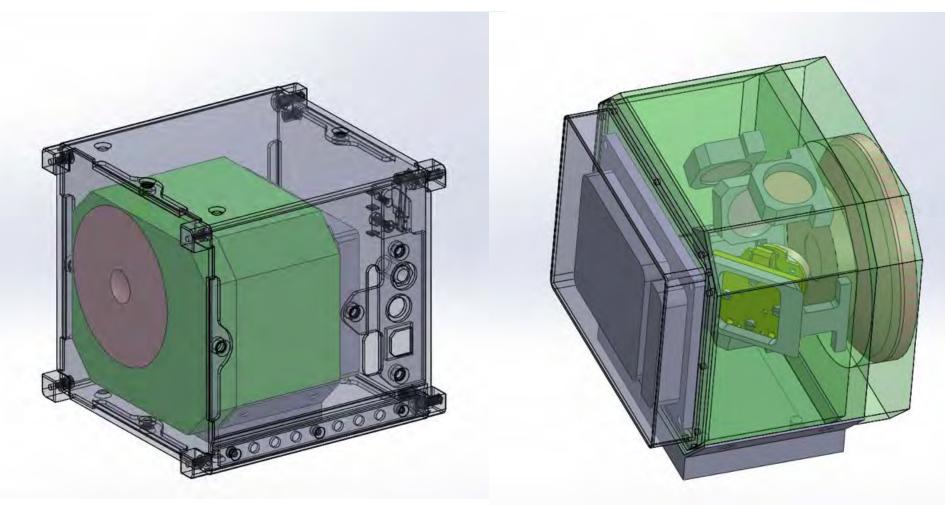
Orbit Raising Maneuver



Candidate Science Mission Applications Enabled


- Significant orbital maneuvering capability of an inexpensive s/c in lunar orbits could be used for:
 - Radio survey and mapping of Moon's radio shadow⁹
 - Observations into polar craters¹⁰
 - Constellations to measure fields and particles with simultaneous spatial and temporal resolutions⁹
 - Telecom relay from small science packages emplaced out of Earth view on lunar farside and in some polar craters¹⁰
- If you can raise from 110 km circular orbit to escape, the same propulsion technique can be used to go from incoming Vinfinity to any orbit

- Heritage: Derived from extensive radio heritage from Electra, SDST and the Low Mass Radio Science Transponder (LMRST)
- **Technical:** ~8 GHz radio with a 5 W amplifier, supporting 2 x Rx and 2 x Tx patch antennas 4x10x10cm at less than 0.5kg.
 - 62.5 bps to 256kpbs and 1kbps from 1.5m km
- **Navigation:** Coherent uplink / downlink allowing for accurate ranging and Doppler measurements.


LMRST Prototype

CubeSat Kit Compliant Iris Digital Board (Arrives next week)

• **Operations:** DSN / CCSDS Compliant – libraries built for NASA AMMOS mission operations / ground data systems software, but are flexible

Monolithic optical transceiver for CubeSat 1U form factor

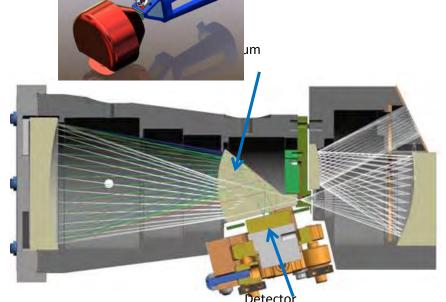
Laser Telecom Uplink and Downlink Options

-----Downlink------

---Uplink----

А 5 m

Hale


В

11.8 m Large Binocular Telescope (LBT)

С

1 m Optical Communications Telescope Laboratory (OCTL)

5.Instruments

Instrument Electronics

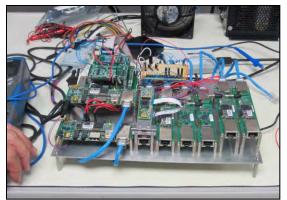
- Detector similar to the one flown on PRISM (Portable Remote Imaging Spectrometer)
- Data processing based on a heritage design
- Consumes ~1W of average power
- Detector interface and data storage would be a new design feature

Overview

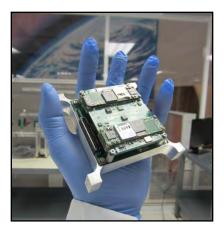
The spectrometer is a miniaturized version of the compact Dyson design form that is currently under development at JPL and elsewhere. Our work will extend our concept from the PRISM airborne spectrometer, tested in early 2012, and a fast, wide-field imaging spectrometer demonstrated as a laboratory breadboard through NASA's PIDDP program.

Parameter	Value		
Wavelength Range	450-1650 nm		
Wavelength Sampling	10 nm		
Detector Type	Thinned InGaAs array		
Pixel Pitch	25 µm typ.		
Angular Resolution	0.5 mrad		
Field of View	14°		
Detector Operating Temp	270 K		
Response Uniformity	'95%		

6. Maximizing downlink information content


CubeSat Onboard processing Validation Experiment (COVE)*

- Funded by NASA Earth Science Technology Office (ESTO)
- JPL payload aboard University of Michigan's M-Cubed CubeSat
- Launched 2011 Oct 28 with NPP
- Intended to demonstrate Xilinx V5QV FPGA with an algorithm to reduce output data rate from MSPI's 9 multi-angle cameras by more than 200x.
- ?Executed unintentional first autonomous docking with Montana State's E1P CubeSat?
- Funded for re-build/re-flight.


* Dmitriy L. Bekker, Paula J. Pingree, Thomas A. Werne, Thor O. Wilson, Brian R. Franklin, *The COVE Payload – A Reconfigurable FPGA-Based Processor* for CubeSats, USU SmallSat Conf, Logan, UT 2012 August.

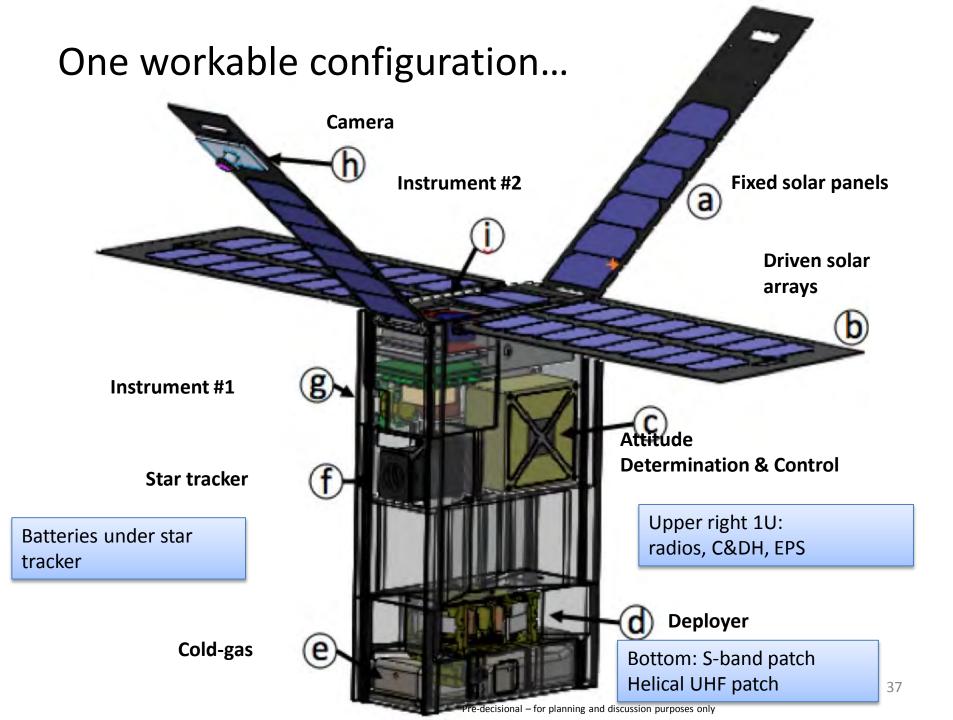
DM Cube: Dependable Multiple Processor for Nanosat

Applications

•Developed by Morehead and Honeywell Space and Defense for the US SMDC

•Based on small, light-weight, low-power, low-cost, Gumstix[™] COM (Computer-On-Module)-based, for high-performance onboard payload processing

•Leverages \$14M NASA NMP ST8 investment in the development of DM technology


• Scalable cluster of high (COTS) processors to >24

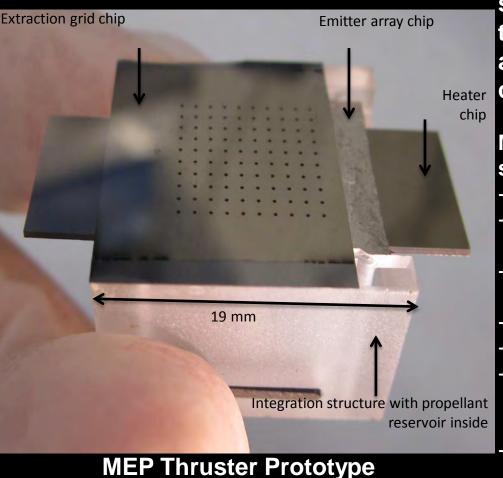
•Peak throughput density of 300 million (MOPS)/watt

•Fault tolerant DM Middleware (DMM) + 8 Processors mitigate high-current SEFIs and will be resilient to total radiation doses expected in the lunar environment

•8 Processor version: mass = 0.24 U and weight =350 g

	Clock Rate	liviemory	Usage	Interface Types	Mode	Manufacturer
Cluster Nodes: ARM Cortex A8		512 MB RAM 512 MB Flash	1.5 Watt	UART, I2C, USB, SPI, CAN, PHY	Network Node	Gumstix™
Cluster Backbone	24 MHz	1 MB	2.0 Watts	PHY LIART SPI	Network Backbone & Management Interface	MSU

Jet Propulsion Laboratory California Institute of Technology


The MEP Technology

MEP Thruster technology is under development for precision pointing, slewing, and orbit transfer of very small to very large deployable spacecraft with a highly distributed architecture capability.

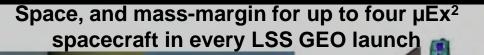
MEP is highly scalable with a low mass, simple and compact architecture

- Scalable microfabricated components
- Highly integrated capillary force driven feed system
- 6 parts total in head, feed system and reservoir
- No valves or pressurized reservoir
- High density solid indium propellant, 7 g/cm³
- Micronewtons to millinewtons of thrust, per element – elements can be arrayed in anysize propulsion system
 - 100 micronewton thruster mass < 10 grams

MEP Notional Thruster Cluster

Jet Propulsion Laboratory California Institute of Technology

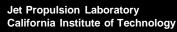
> 3D Array of MEP thrusters, arranged to allow removal of 3 dimensions of torque via bankwise off-pulsing via Indium propellant heater cycling


Individual MEP solid-state thruster chips, for propulsion and limited attitude control

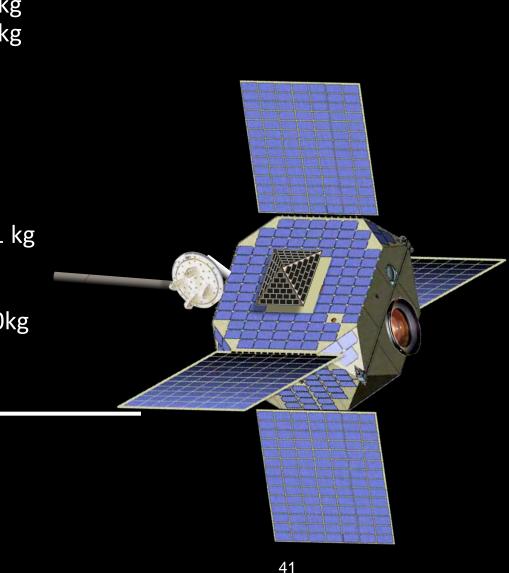
Butane micro-thruster clusters for proximity operations and rapid attitude changes

Full thruster array provides up to 5 mN thrust, which provides up to 3 km/s / year. Total power consumption of MEP, under 100 W (for 2 mN)

Jet Propulsion Laboratory California Institute of Technology


Other Launch Opportunities

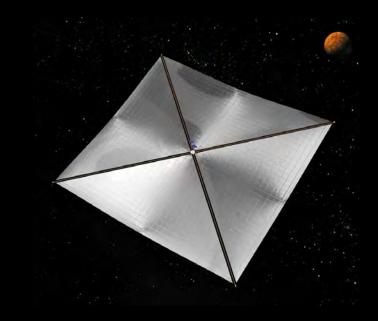
Shared rides to GEO for economical and flexible launch opportunities 22"


40"

40

6.9 kg Structure, Power, Antennas: Science and Navigation Payloads: 6.0 kg Avionics 4.4 kg MEP (main and ACS) 4.4 kg Butane propulsion system 5.4 kg Miscellaneous 1.0 kg Butane Propellant 5.0 kg Indium Propellant 8.0 kg Total (Maximum Expected Value) 41.1 kg

Total Allocated Wet/Loaded Mass 50.0kg



μEx² Mass Overview

The Future – Lunar Science Concepts

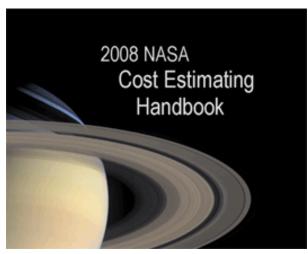
Cosmology, radio science, and other topics

*Proposed Mission - Pre-Decisional – for Planning and Discussion Purposes Only Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

Ground Segment: Morehead 21 M

•Full-Motion, High Precision Dish Designed and Built with NASA assistance •Operational in 2006 Replaceable feeds including L-band, S-band, C-band, and Ku-band •Provides Experimental and IOAG Compatible **TT&C** Services •Operated Largely by Cost-effective **Undergraduate Students** •High Gain and Extreme Accuracy reduce comms link with small, low power, distant S/C •Station is ideal for LEO and lunar spacecraft experiments and operations

On-going Initiatives


Dedicated Facilities Community Labs and Environmental Test Capabilities

Deep Space Network (DSN) Standard Interfaces, Services, Ops & Nav Support beyond LEO

CubeSat Tracking Station UHF/VHF (receive-only) and other capabilities

Cost Model Development New models relevant to small missions

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

Conclusions

INSPIRE would enable a new class of interplanetary explorer, while providing components to reduce the size and cost of traditional missions

- Deep space NanoSpacecraft are scientifically compelling but they must be proven before PI / reviewer acceptance
- INSPIRE would demonstrate survivability, navigation and communication utilizing the CubeSat platform, and in partnership with the CubeSat community
- INSPIRE is partnering with the CubeSat community to extend capabilities to deep space
 - Peach Mountain and DSS-13 receive stations
 - Robust low-power C&DH
 - Monitored high-power processing
 - 3-axis cold-gas system
- JPL is developing novel technologies to support these and future missions
 - X-band Nav/Comm radio
 - Vector-Helium Magnetometer
 - DSN Compatible Ground Data System and Flight Software