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TES: complex, or flexible?
Separation of the detection and readout functions adds complexity, but 

allows separate optimization.

Detection flexibility

The TES has the highest energy resolution of any non-
dispersive photon detector technology over six orders of magnitude in 
wavelength (visible photons to gamma rays)

Readout and multiplexing flexibility

• FDM makes it easier to use communication channels with large 
bandwidth.

• CDM enables high Shannon efficiency in lower bandwidth channels, 
with extremely small MUX components and low electronics cost

A hybrid modulation function enables both (a la CDMA cell phones) 
making efficient use of our communication resources 



• Define time band by 
coupling output ‘channel’
to different detectors 
sequentially.

• Define frequency band 
with different passive LC 
circuits

• Define ‘code’ band by 
switching the polarity with 
which each detector 
couples to the output 
channel in an orthogonal 
Walsh pattern

Time-division MUX                   Frequency-division MUX         Code-division MUX

Three modulation functions
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• To fully characterize a signal with bandwidth B, it must be 
sampled at the “Nyquist rate” 

• The number of voltage levels that can be distinguished in 
each sample is determined by the signal-to-noise ratio. The 
number of bits of information scales as log2 of the number 
of distinguishable voltage levels.

• Taken together, the number of bits per second in an analog 
communication channel is:

Shannon-Hartley Theorem
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2log 1 S NC B= +

The Shannon-Hartley Theorem
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Information content in an optical TES

Optical TES detector
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Information capacity of cryogenic amplifiers

SQUID
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Since our optical photon detector requires ~ 100 KHz, a 
highly efficient MUX would be able to read out ~102 detectors 
per SQUID, and ~106 detectors per HEMT
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• Define time band by turning SQUIDs on one at a time
• Each detector output is measured 1/N of the time

Time-division MUX



Soft x-ray: 2x8 time-division MUX

NASA/GSFC 8x8 TES 
array

NIST TDM MUX

(credit Randy Doriese)
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Soft x-ray: 2x8 time-division MUX

NASA/GSFC 8x8 TES 
array

NIST TDM MUX

(credit Randy Doriese)

MnKα1

MnKα2

ΔEFWHM =
2.94 ± 0.02 eV



ΔEFWHM = 22 eV
@ 103 keV
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Gamma-ray TES calorimeter



• 66 pixel array: 
256 now in the 
field

• LANL/NIST

Plutonium isotopic analysis



CMB: Atacama Cosmology Telescope
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The Atacama Cosmology Telescope - SZ

3,000 TES pixels 
on the sky

SZ cluster
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GHz FDM: MKIDs

Already well described by B. Mazin



remote dissipation

dissipationless rf-SQUIDs (flux variable inductors)

f

f

GHz FDM of TESs

A Josephson junction is required to provide 
noise matching between TES and HEMT



GHz FDM: microwave SQUIDs

• dissipationless, reactive SQUIDs
• no feedback (modulated)
• ~ pW power dissipation per 
resonator
• Use electronics from readout 
consortium



CMB polarimeter measured with MSQUID
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• Every detector pixel is on all of 
the time

• One SQUID for many detectors

• Polarity of coupling to the SQUID 
switches between +1 and -1 in 
orthogonal pattern (Walsh matrix) 

Additional benefit: SQUID 1/f noise and common-mode rf pickup is 
removed in all but the first pixel 
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• Original signals recovered by 
multiplying by inverse Walsh 
matrix.

Walsh Code Division Multiplexing



When biased at 
Φ=Φ0/2+nΦ0

the critical current of a low 
inductance (low beta_L) 
SQUID is close to zero.
High ‘off’ resistance (a few 
ohms).

( )00 cos2 ΦΦ≈ πcc II
12 00 <<Φ= LIcLβfor

Flux-actuated switch

Ref. Beyer, Drung
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CDM noise performance

Achieve the expected flux noise white level

The modulation eliminates low-frequency noise
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Shannon Efficiency
• How efficiently are we using our communication resources now? 

• Is there room for improvement? 

( )( )2

2log 1 S NC B= +Information content of analog channel

.004%144~400 MHzMKID 
camera tile 

0.1%8~1 MHzFDM (CMB)

0.5%40~1 MHzTDM (CMB)
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Shannon efficiency: det
det, assume 2.7kHz for CMB pixel
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Lots of room for improvement



Towards a megapixel array
• We need the information capacity of HEMT + coax

• We need the Shannon efficiency of the SQUID-based approaches

Go to many more resonators (deal with ~1 MHz variation in 
resonator position, computational cost)

Or, implement multiple sensors on a single resonator

.004%144~400 MHzMKID 
camera tile 

0.1%8~1 MHzFDM (CMB)

0.5%40~1 MHzTDM (CMB)

SENBandwidth

Lots of room for improvement
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• One coax can be used to FDM 16k channels
• 64 coax = Mega Pixel
• 40 μs time constants, 1 kcps / pixel
• Lenslet array – high fill factor, 70 um pixels

25 μm



Putting it all together

1. All components required for the megapixel imager already 
work with sufficient performance. Power dissipation of the 
MUX components is sub-fW per pixel. All elements 
fabricated in one planar circuit on one chip.

2. The CDM switches and resonator readout components use 
the same layers and fabrication steps. 8 lithography levels 
required for the full chip, including the TES.

3. Readout consortium electronics has sufficient performance 
for FDM demultiplexing of the resonators. Cost per channel 
is already acceptable since 128 pixels are on each 
resonator.

4. Walsh code demultiplexing is a matrix multiply step that can 
be done in firmware or software (multiple computers 
required).


