

Planetary Science: Unique Space Science from Small Satellites

Professor Sara Seager, MIT

Keck Institute for Space Studies Workshop

Small Sats: A Revolution in Space Science, July 2012

Acknowledgements: Mary Knapp, Vlada Stamenkovic

High Impact Planetary Science in an iCubeSat Era

- Search for Exoplanets around the Brightest Sun-like Stars
- Characterize Interior Composition of Small Bodies and Moons
- Search for Life in the Solar System

Flagship vs. CubeSat

ExoplanetSat 85 mm Cost 5 M Sched. 2014 Hubble 2.4 m Cost > 6B

JWST 6.5 m Cost 8B Sched. 2018 ATLAS 8 m NASA Concept

Fleet: ~30 M

Milky Way Galaxy Kepler Search Space - 3,000 light years -Sagittarius Arm **Sun** Orion Spur Perseus Arm Portrait of the Milky Way @ Jon Lomberg www.jonlomberg.com

2,326 AS OF DECEMBER 5, 2011

Kepler-22

ExoplanetSat

For an overview see Smith et al. 2010

Two-Stage Control Concept

Lab-based demo has shown several arcsecond control. See Pong et al. 2010

ExoplanetSat Mission Design

The ExoplanetSat 3U prototype lays the technological and scientific foundation for the graduated growth of a modular, extensible fleet of satellites observing bright stars for other Earths.

ExoplanetSat Lessons Learned

- A singular focused science goal
- Real science = complexity = cost
- Investment cost for first unit is 10 to 50 times that of most CubeSats
- A new paradigm for space science
 - Graduated growth of a constellation
 - Each spacecraft functions independently
 - Meaningful science achieved from the constellation

High Impact Planetary Science in an iCubeSat Era

- Search for Exoplanets around the Brightest Sun-like stars
- Characterize Interior Composition of Small Bodies and Moons
- Search for Life in the Solar System

Asteroids

More than 500,000 known.

Most, but not all, between Mars and Jupiter

Orbit Crossing "Near-Earth Asteroids" More than 8,000 known.

Depicted: Orbits for 100 largest

Eros

Solid Solid with Ruble pile Gravel major fracture covered conglomeration with dust

Gaspra

59 kilometers

lda

Murphy et al. 2010, Draper Lab/MIT

Asteroid 99942 Apophis

Friday April 13, 2029

Europa

Subsurface life?

Indirect evidence for a liquid water ocean

Thickness of the ice covering?

Europa should have natural seismic signals

Kovac and Chyba 2001

High Impact Planetary Science in an iCubeSat Era

- Search for Exoplanets around the Brightest Sun-like stars
- Characterize Interior Composition of Small Bodies and Moons
- Search for Life in the Solar System

Gullies with characteristics of watercarved channels.

Mars Reconnaissance Orbiter Image: NASA/JPL/University of

Arizona

The Search for Water on Mars

Trenches dug by the Phoenix Mars Lander.

Photo credit: NASA/JPL-Caltech/ University of Arizona/Texas A&M University

View of Mars colored according to the methane concentration observed in the atmosphere. Warm colors depict high concentrations. http://dps.aas.org/education/

Methane on Mars

- View of Mars colored according to the methane concentration observed in the atmosphere. Warm colors depict high concentrations.
- Methane has a short lifetime, implying recent production
- Variations in space and time suggest origin from localized areas

Methane on Mars

Explanation #1: water-rock interactions

~2 μm methane

Explanation #2:
Produced by bacteria
in subsurface regions with
liquid water

http://dps.aas.org/education/dpsdisc/

How to Detect Life on Mars?

Titan: Lakes without Water

- Titan is 94 K too cold for liquid surface water, but not too cold for liquid methane and ethane
- Sunlight should rapidly convert atmospheric methane to ethane and other species.
 But methane is abundant, so must be replenished.
- Robust evidence for liquid lakes from Cassini radar, imaging, and spectra

A New Paradigm for Planetary Space Science

- Frequent iCubeSat launches as complimentary to the rare Flagship/New Horizons/Discovery class NASA missions
- For impact: a singular, focused science goal is essential
- Unique science breakthroughs will come from the iCubeSats unparalleled capability of constellations or fleets of independently functioning spacecraft or landers