Challenges in earthquake physics and source imaging
Jean-Paul Ampuero and Nadia Lapusta (Caltech Seismolab)
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 Main goals and current issues in earthquake dynamics
 The source imaging inverse problem

e Parallels with laboratory experiments

* [nteraction of earthquakes and slow slip



Goals of earthquake source dynamics studies
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* Earthquake engineering: hazard
assessment including source, path and

site effects.

— Amplitude and spatial variability of
ground motions

— Tall buildings and lifelines ~ secs
Modified after Stewart et al. (2002)
— Short structures < sec Each dot is an available recording

 Fundamental questions: understanding
earthquake physics. Requires slip velocity
v(x,z,t) on scales:
— Rise time ~ secs, kms
— Process zone << sec,km

— Rupture complexity: multi-scale
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Scientific questions about the earthquake source

Earthquake source complexity: geometry and evolution of the rupture front,
broad-scale heterogeneity, variability of rupture speed

Pulse/crack rupture styles: how short are earthquake rise times?
Fault rheology: which weakening mechanisms are dominant in real faults?

Colormap
clipped,
(max up
to 6 m/s)

Slip Velocit




Fault rheology: poorly known earthquake physics

Laboratory friction experiments

Missing fault constitutive law !
e + Scaling problem

San Andreas fault

j Force transducer (LFT)

Scale: 300 mm
—

Two Axial Testing Apparatus (o h na ka)

Which physical processes are dominant?
e Friction
e Dynamic damage around the fault
e Thermal pressurization of fault zone fluids
e Dilatancy of the fault gouge
e Flash heating, melting, lubrication
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Cracks vs. pulses (definition)

Looking at slip velocity on the fault plane
Thick ellipse () = barrier (will stop rupture)
Colored zone = actively slipping region at a given time

Rise time = duration of slip at a given point on the fault

Crack Pulse

Long rise time Short rise time

= final size / rupture speed



Cracks vs. pulses (definition)

Looking at slip velocity on the fault plane
Thick ellipse () = barrier (will stop rupture)
Colored zone = actively slipping region at a given time

Rise time = duration of slip at a given point on the fault
Process zone = [l

Crack Pulse

Long rise time Short rise time

= final size / rupture speed



Possible origins of pulse-like rupture (short rise times)

Heter, prestress, Do, & failure stress

* In homogeneous faults, at low stress, self-
healing pulses appear under velocity-

weakening friction (e.g. thermal weakening)
Perrin, Rice and Zheng (1995); Zheng and Rice (1998); Nielsen and 0
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Source imaging today

Source imaging inverse problem:
retrieve the space-time distribution
of fault slip from seismological,
geodetic and field data

Resulting slip models are notoriously
heterogeneous (large spatial
variability)

There are intrinsic limitations:

— lll-posed inverse problem: very sensitive
to regularization, data selection, model
parameterization.

— Limited frequency band < 1Hz: poor
resolution on the fault >5km, no detail
about the friction law can be retrieved

— Surface observations: lower resolution at
depth, contamination by shallow site
effects

— Imaging resolution improves slowly as
function of station density
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A suite of models for the 1999 Izmit (Turkey, M 7.5)

Delouis et al (2002), M = 7.58
L

Yagi and Kikuchi {1999), M = 7.42
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Adding more stations decreases resolution length...
but proportionally with depth

Fewer stations

—

g_ The majority of the data variance
2 can always be explained by small-
‘ ’ scale structure near the surface

Distance along Strike

More stations

=1 —) This explains why the inversion is
a poorly conditioned regardlegs of
— the number of surface stations

Distance along Strike
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Partial summary
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Wish list: infer fault slip velocity v(x,z,t) from near-fault ground motions on
the following resolution scales:

— Rise time = secs, kms

— Process zone << sec,km

— Rupture complexity: multi-scale

— Large earthquakes: displacement, velocity resolution < cm, cm/s
Can space techniques yield these dense, high rate observations?

Strategies: regional vs. global monitoring ?




