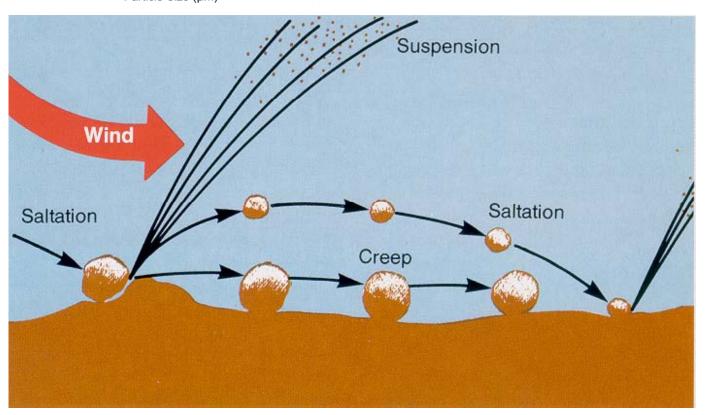
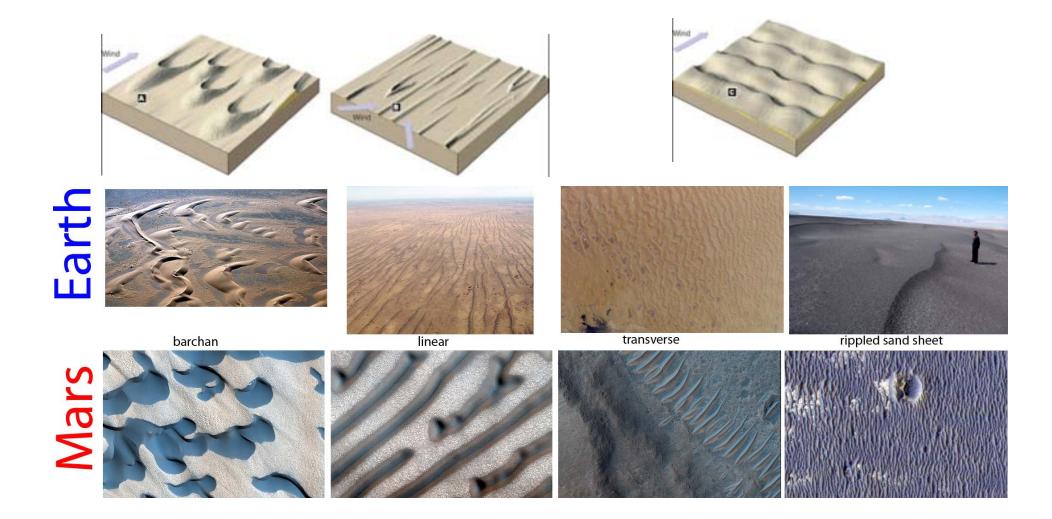

Nathan Bridges
HiRISE Co-Investigator
Applied Physics Laboratory
Laurel, MD

Geomorphic Processes Potentially Observable From Remote Platforms




	Venus	Earth	Mars	Titan
Impact	no	minor	yes	minor?
Volcanism	yes	yes	unlikely	?
Fluvial	NA	yes	yes (gullies, debris flows)	yes
Glacial/ice	NA	yes	unlikely	likely?
Tectonic/Seis mic	no	yes	no	no?
Aeolian	unlikely	yes	yes	yes

Threshold Speeds and Terminal Velocities

$$u^* = (\tau/\rho)^{0.5}$$

 $u(z) = (u^*/\kappa) ln(z/z_0)$

Bedform Movement on Earth and Mars

- Bedform Movement on Earth
 - Dunes: Inverse correlation with height
 - 1 m heights: ~10 m/year
 - 10 m heights: ~1 m/year
 - This assumes active aeolian regime and mobile sands
 - Sand ripples
 - Fast: Daily timescales
 - Granule ripples
 - · Slow, only moving a few cm in high wind events
- Evidence For Bedform Movement on Mars
 - Bedforms exist (but can they move today?)
 - Downslope streaks on dune slipfaces: 1-2 cm/year [Fenton, 2006]
 - Shrinkage and disappearance of ice-cored dunes [Bourke et al., 2008]. How much is abrasion and sublimation?
 - Some sand ripple movement at Spirit rover site: 2 cm in one wind event! But how does this scale to larger ripples?
 - Granule ripples should be very slow: ~1-10 mm/year [Zimbelman et al., 2009]
- Implications for Mars
 - If bedforms moving today, then surface is very dynamic
 - If bedforms are not moving, then the climate in the past was probably different

Relevant Recent Investigations

- Dune migration on Earth measured using COSI-Corr
 - "World's fastest" barchans in Chad; ASTER[Vermeesch and Drake, 2008]
 - Dunes in Kobuck National Park, AK; ASTER and SPOT [Necsouiu et al., 2009]
- Mars: HiRISE images (25 cm/pixel +) were successfully co-registered and correlated using the COSI-Corr correlator (JPL-funded internal investigation)

Upcoming Work

- MDAP: Sub-pixel Change Detection Using HiRISE Images
 - Submitted in 2008, but not accepted (☺)
 - Revised for 2009, with appropriate changes made. Should hear about status in spring of 2010 (©?)
- Goal: Look for bedform migrations down to 3 cm over 1+ Mars year time span
- Challenges
 - Acquisition geometry
 - Topographic error
 - Illumination changes
 - Brightness changes

Recommendations for Future Instrumentation/Missions

- Cameras:
 - Higher SNR
 - Higher resolution
 - Offset detectors
- Mission design:
 - Instantaneous stereo to build DEM
 - Early AM or late PM orbit
- High stability platform
- First, of course, we should analyze HiRISE data, which will hopefully happen soon