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Desiderata 

Provide a programming paradigm that enables 
robotic systems: 

•  to be commanded simply and intuitively; 
•  to adapt to uncertainty and failure; 
•  to communicate at a cognitive level; 
•  to work fluidly with humans, and 
•  to manage risk taking effectively. 



Space Autonomy Architectures 

•  Autonomous Operation 
– Cassini AACS, Remote Agent,  

MDS, Titan 
•  Autonomous Science 

– Autonomous Sciencecraft Experiment 
•  Autonomous Navigation 

– ClarAty, MERS DIME & Gestalt 

•  Mixed Initiate Interaction 
– MapGen + descendants 



Outline 

•  Robust, Goal-directed Execution 
•  Plan Dispatching 
•  Diagnosis and Mode Estimation 
•  Plan Generation 





Remote Agent on Deep Space One 

1.  Commanded by giving goals 
2.  Reasoned from  

commonsense models  
3.  Closed loop on goals 

Goals	



Diagnosis 
& Repair	



Mission 
Manage

r	


Executive	



Planner/	


Scheduler	



Remote Agent	



[Muscettola et al, AIJ 00; 
Williams & Nayak, AAAI 95] 



Remote Agent Experiment  
on Deep Space 1 – May, 1999 

May 17-18th experiment: Mission-level Fault Protection 
•  Generate plan for course correction and thrust  
•  Diagnose camera as stuck on 

–  Power constraints violated, abort current plan 
 & replan 

•  Perform optical navigation 
•  Perform ion propulsion thrust 

 
May 21th experiment: Engineering-level Fault Protection 
•  Diagnose faulty device and 

–  Repair by issuing reset. 
•  Diagnose switch sensor failure.  

–  Determine harmless, and continue plan.  
•  Diagnose thruster stuck closed and  

–  Repair by switching to alternate method  
of thrusting.  

•  Back to back planning 



Model-based Autonomy 

– An embedded programming languages  
elevated to the goal-level through operations on 
hidden state (RMPL). 

– A language executive that achieves robustness by 
reasoning over constraint-based models (Titan). 

–  Interfaces that support natural human interaction 
fluidly and at the cognitive level. 



engine to standby	



Rotate spacecraft:	


•  command ACS to entry orientation	



planetary approach	



separate���
lander	



switch to���
inertial nav	

 rotate to entry-orient���

& hold attitude	



Commanding with Goals: System Engineers 
Specify Missions in Terms of Evolving States 

[Titan Executive, 
 Williams et al., IEEE Procs 03] 



engine to standby	



Separate lander from cruise stage:	



planetary approach	



separate���
lander	



switch to���
inertial nav	

 rotate to entry-orient���

& hold attitude	



cruise���
stage	



lander���
stage	

pyro���

latches	



Commanding with Goals: System Engineers 
Specify Missions in Terms of Evolving States 

[Titan Executive, 
 Williams et al., IEEE Procs 03] 



Autonomous Systems are Commanded  
in Terms of Evolving Goal States   

Embedded programs evolve actions 
by interacting with plant sensors 
and actuators: 

•  Read sensors  

•  Set actuators 

Embedded Program 

S 
Plant 

Obs Cntrl 

Model-based programs evolve 
abstract states through direct 
interaction: 

•  Read abstract state 

•  Write abstract state 

Model-based 
Embedded Program 

S 
Plant 

Model-based executive maps 
between state and sensors/actuators. 

S’ 
Model-based Executive 

Obs Cntrl 

Programmer maps between state 
and sensors/actuators. 



Model-based Programs  
Specify and Execute Evolving States 

Turn camera off and 	


engine on	



EngineA EngineB 

Science Camera 

OrbitInsert()::  
 
 do-watching (EngineA = Thrusting OR 
                        EngineB = Thrusting) 
      parallel {  
           EngineA = Standby; 
           EngineB = Standby; 
           Camera = Off; 
           do-watching (EngineA = Failed) 
                 {when-donext (EngineA = Standby) AND  
                                          Camera = Off)  
                       EngineA = Thrusting}; 
           when-donext (EngineA = Failed AND  
                                   EngineB = Standby AND  
                                   Camera = Off)  
                 EngineB = Thrusting} 
     

[Titan Executive, 
 Williams et al., IEEE Procs 03] 



The program assigns EngineA = Thrusting,  
and the model-based executive . . . .       

Determines that valves	


on the backup engine B���
will achieve thrust, and���
plans needed actions.	



Deduces that a valve 	


failed - stuck closed	



Plans actions	


to open	



six valves	



Fuel tank	

Oxidizer tank	



Deduces that	


thrust is off, and���

the engine is healthy	



Prog: EngineB = Thrusting 

Identify Modes 

Diagnose Failure Modes 

Reconfigure Modes 

Repair Modes 



Behaviors Generated from a Plant Model 

Standby 

Engine Model 

Off 

Failed 

Firing 

component modes… 

 

(thrust = full) AND 
(power_in = nominal) 

(thrust = zero) AND 
(power_in = zero) 

(thrust = zero) AND 
(power_in = nominal) 

 

  described by finite domain constraints on variables… 

 

  

          deterministic and probabilistic transitions 

off- 
cmd 

standby- 
cmd 

0.01 

0.01 
standby- 

cmd 
fire- 
cmd 

 

  

           

          cost/reward 

0 v 

0 v 

2 kv 

2 kv 

one per component … operating concurrently 

On 

Camera Model 

Off 

turnoff- 
cmd 

turnon- 
cmd 

(power_in = zero) AND 
(shutter = closed) 

(power_in = nominal) AND 
(shutter = open) 

0 v 

20 v 

0.01 

0.01 

0 v 

[Titan Executive, 
 Williams et al., IEEE Procs 03] 



Control Sequencer 

Deductive   Controller 

System Model	



Commands	

Observations	



Control Program 

Plant	



Titan Model-based Executive	

RMPL Model-based Program	



Goals	

Estimates	



Generates target goal states	


conditioned on state estimates	



Mode	


Estimation	



Mode	


Reconfiguration	



Tracks	


likely ���
modes	



Tracks least cost 	


modes achieving	



goal states	



l  Executes concurrently	


l  Preempts	


l  Queries (hidden) states	


l  Asserts (hidden) state	



OrbitInsert()::  
(do-watching ((EngineA = Firing) OR 
                         (EngineB = Firing)) 
      (parallel 
           (EngineA = Standby) 
           (EngineB = Standby) 
           (Camera = Off) 

           (do-watching (EngineA = Failed) 
                 (when-donext ( (EngineA = Standby) AND  
                                            (Camera = Off) )  
                       (EngineA = Firing))) 
           (when-donext ( (EngineA = Failed) AND  
                                      (EngineB = Standby) AND  
                                      (Camera = Off) )  
                 (EngineB = Firing)))) 
        

Closed 

Valve 
Open Un- 

known 

Stuck 
closed 

Open Close 

0. 01 

0. 01 

0.01 

0.01 

inflow iff outflow 

[Williams et al., IEEE Procs 03] 



Control Sequencer 

Deductive   Controller 

System Model	



Commands	

Observations	



Control Program 

Plant	



Titan Model-based Executive	

RMPL Model-based Program	



Goals	

Estimates	



Mode	


Estimation	



Mode	


Reconfiguration	



l  Executes concurrently	


l  Preempts	


l  Queries (hidden) states	


l  Asserts (hidden) state	



Architecture similar to 
•  Cassini AACS FP 
•  MDS 

A kind of autonomous configuration  
and health management system. 

Control Programs are like State Charts 



Navigation, Risk and Mixed Interaction: 
Personal Transportation System 

Complements of Branko Sarh, Boeing Research 



Observations Commands 

Plant 

Model-based Executive 

User Interface 

GUI 

Sulu 
Navigates with 
continuous actions 
(goal-directed 
model-predictive 
controller) 

Kongming Pieces together 
discrete actions 
(hybrid generative 
planner) 

Kirk Chooses 
between user 
specified options 
(TPN planner) 

Planner C
oordinator 

Speech 



Model-based Executives 

1.  Commanded through time evolved goals. 
2.  Reasons from commonsense models.  
3.  Closes loop on goals. 
4.  Model-based programs specify goals and models. 

Goals 	



Mode	


Estimation & 

Reconfiguraton	



Mission 
Manager/

MPC	



Plan	


Dispatcher	



Planner/	


Scheduler	





Outline 

•  Robust, Goal-directed Execution 
•  Plan Dispatching 
•  Diagnosis and Mode Estimation 
•  Plan Generation 
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Supports Time Critical Missions	
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An effective Scrub Nurse: 
•  works hand-to-hand, face-to-face with surgeon, 

•  assesses and anticipates needs of surgeon, 

•  provides assistance and tools in order of need, 

•  responds quickly to changing circumstances, 

•  responds quickly to surgeon’s cues and requests. 

Supports Robot & Human Coordination	



[Shah, Conrad and Williams, ICAPS 09]	
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Robust Plan Execution 

Start End 
Rover1.goto(p4) 

Rover2.goto(p1) 

Rover1.imageTargets Rover1.goto(p5) Rover1.goto(p3) 

Rover2.goto(p2) Rover2.imageTargets Rover2.goto(p3) 

imageScienceTargets(Rover1, Rover2)  
{Parallel 
   {Sequence 
   [5,10] Rover1.goto(p4);  
        [5,10] Rover1.goto(p5);  
        [2,5] Rover1.imageTargets();  
        [5,10] Rover1.goto(p3); 
   }, 
   {Sequence 
   [5,10] Rover2.goto(p1); 
   [5,10]Rover2.imageTargets(); 
        [2,5] Rover2.goto(p2); 
       [5,10] Rover2.goto(p3); 
   } 
} 

p1 

p2 p3 

p4 

p5 1 

2 

[5,10] [5,10] [2,5] [5,10] 

[5,10] [5,10] [2,5] [5,10] 

Agents adapt to temporal disturbances in a coordinated manner 
by scheduling the start of activities on the fly. 

in RMPL [williams et al]	



[Muscettola, Morris, Tsamardinos,KR 98]	
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Outline: To Execute a Temporal Plan	



offline 
online 

	



3. Schedule Plan	



	



1. Describe Temporal Plan	



	



	


	



2. Test Consistency	



	



4. Execute Plan	



	



Schedule Off-line     Schedule Online 

	


4. Dynamically Schedule Plan	



	



	



3. Reformulate Plan	



	



2. Test Consistency	



	



1. Describe Temporal Plan	
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Describe Temporal Plan	


	


Example: Deep Space One Remote Agent Experiment	



Max_Thrust Idle Idle 

Poke 

Timer 

Attitude 

Accum thrust 

SEP Action 

SEP_Segment 

Th_Seg 

contained_by"

equals" equals"meets"
meets"

contained_by"

Start_Up Start_Up Shut_Down Shut_Down 

Thr_Boundary 

Thrust Thrust Thrust Thrust Standby Standby Standby 

Th_Sega Th_Seg Th_Seg Idle_Seg Idle_Seg 

Accum_NO_Thr Accum_Thr Accum_Thr Accum_Thr Thr_Boundary 

contained_by"

CP(Ips_Tvc) CP(Ips_Tvc) CP(Ips_Tvc) 

contained_by"

Th_Seg 
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Input:	

An STN <X, C> where Cj = <<Xk, Xi><aj,bj>>	


	



	


	



	



	


	



Output: An assignment to X satisfying C.	


	



	

	

 	

	

 	

	

 	

	

 	

	

 	

A=0, B=2, C=1, D=3	



Scheduling a Simple Temporal Network (STN)	



[1,10]	



[0,9]	



[1,1]	



[2,2]	



A	


B	



C	


D	
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Scheduling without Search 
 

X0 Ls Le 

Ss Se 

[10,20] [30,40] 

[10,20] 

[40,50] 

[60,70] 

Idea: Expose Implicit Constraints in STN 
•  Input:  STN. 
•  Output: “Decomposable” (Implied) STN -> Schedule. 

X0	

 Ls	

 Le	



S s	

 S e	



[40,50]	



[10,20]	

 [30,40]	



[20,30]	


[10,20]	



[60,70]	



[40,50]	



[20,30]	
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Scheduling without Search 

Input: Decomposable STN (APSP D-Graph) 
Output: Schedule (Assignment to X, consistsent with STN) 
Property: Can assign variables in any order, without backtracking. 

 

X0	

 Ls	

 Le	



S s	

 S e	



[40,50]	



[10,20]	

 [30,40]	



[20,30]	


[10,20]	



[60,70]	



[40,50]	



[20,30]	



Key ideas 

•  Incrementally tighten feasible intervals,  
  as commitments are made. 
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Scheduling without Search 

Key ideas 

•  Incrementally tighten feasible intervals,  
  as commitments are made. 

X0	

 Ls	

 Le	



S s	

 S e	



[40,50]	



[10,20]	

 [30,40]	



[20,30]	


[10,20]	



[60,70]	



[40,50]	



[20,30]	



•  Select value for X0	



	

 	

	



t=0 
 
 
 

Input: Decomposable STN (APSP D-Graph) 
Output: Schedule (Assignment to X, consistsent with STN) 
Property: Can assign variables in any order, without backtracking. 
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Scheduling without Search 

X0	

 Ls	

 Le	



S s	

 S e	



[40,50]	



[10,20]	

 [30,40]	



[20,30]	


[10,20]	



[60,70]	



[40,50]	



[20,30]	



•  Select value for X0	



	

 	

	



t=0 
 
 
 

[10,20] 
 
 
 

Input: Decomposable STN (APSP D-Graph) 
Output: Schedule (Assignment to X, consistsent with STN) 
Property: Can assign variables in any order, without backtracking. 

 

[20,30] 
 
 
 

[60,70] 
 
 
 

[40,50] 
 
 
 

Key ideas 

•  Incrementally tighten feasible intervals,  
  as commitments are made. 
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Scheduling without Search 

X0	

 Ls	

 Le	



S s	

 S e	



[40,50]	



[10,20]	

 [30,40]	



[20,30]	


[10,20]	



[60,70]	



[40,50]	



[20,30]	



•  Select value for X0	



•  Select value for Ls, 
consistent with X0	



	

 	

	



t=0 
 
 
 

  t=15 
 
 
 

Input: Decomposable STN (APSP D-Graph) 
Output: Schedule (Assignment to X, consistsent with STN) 
Property: Can assign variables in any order, without backtracking. 

 

[20,30] 
 
 
 

[60,70] 
 
 
 

[40,50] 
 
 
 

Key ideas 

•  Incrementally tighten feasible intervals,  
  as commitments are made. 
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Scheduling without Search 

X0	

 Ls	

 Le	



S s	

 S e	



[40,50]	



[10,20]	

 [30,40]	



[20,30]	


[10,20]	



[60,70]	



[40,50]	



[20,30]	



•  Select value for X0	



•  Select value for Ls, 
consistent with X0	



	

 	

	



t=0 
 
 
 

  t=15 
 
 
 

Input: Decomposable STN (APSP D-Graph) 
Output: Schedule (Assignment to X, consistsent with STN) 
Property: Can assign variables in any order, without backtracking. 

 

[25,30] 
 
 
 

[65,70] 
 
 
 

[45,50] 
 
 
 

Key ideas 

•  Incrementally tighten feasible intervals,  
  as commitments are made. 
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Scheduling without Search 

X0	

 Ls	

 Le	



S s	

 S e	



[40,50]	



[10,20]	

 [30,40]	



[20,30]	


[10,20]	



[60,70]	



[40,50]	



[20,30]	



•  Select value for X0	



•  Select value for Ls, 
consistent with X0	



•  Select value for Le, 
consistent with X0, Ls	



•  Select value for Ss, 
consistent with X0, Ls, 
Le	



•  Select value for Se…	



	

 	

	



t=0 
 
 
 

  t=15 
 
 
 

Input: Decomposable STN (APSP D-Graph) 
Output: Schedule (Assignment to X, consistsent with STN) 
Property: Can assign variables in any order, without backtracking. 

 

   t=30 
 
 
 

t=70 
 
 
 

t=45 
 
 

Key ideas 

•  Incrementally tighten feasible intervals,  
  as commitments are made. 
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Flexible Execution	



offline 
online 

	



3. Schedule Plan	



	



1. Describe Temporal Plan	



	



	


	



2. Test Consistency	



	



4. Execute Plan	



	



Schedule Off-line Problem: delays and fluctuations in task 
duration can cause plan failure.	



	



Observation: Least commitment 
temporal plans leave room to 
adapt.	



	



Flexible Execution adapts through 
dynamic scheduling [Muscettola et al]	


–  Assigns time to event when 

executed.	
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Flexible Execution	



offline 
online 

	



3. Schedule Plan	



	



1. Describe Temporal Plan	



	



	


	



2. Test Consistency	



	



4. Execute Plan	



	



 Schedule Off-line          Schedule Online 

	


4. Dynamically Schedule Plan	



	



	



3. Reformulate Plan	



	



2. Test Consistency	



	



1. Describe Temporal Plan	
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Dynamic Scheduling by Decomposition?	



Consider a Simple Example	



C 

D 

B 

[2,11]	



A [1,1]	



[1,10]	



[0,9]	

 [2,2]	



[1,1]	



•  Select executable timepoint and assign.	



•  Propagate assignment to neighbors.	



[Muscettola, Morris, Tsamardinos KR98]	
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Dynamic Scheduling by Decomposition?	



Consider a Simple Example	



C 

D 

B 

[2,11]	



A [1,1]	



[1,10]	



[0,9]	

 [2,2]	



[1,1]	



•  Select executable timepoint and assign.	



•  Propagate assignment to neighbors.	



A t = 0 

[1, 10] 

[0, 9] 

[2, 11] 

[Muscettola, Morris, Tsamardinos KR98]	
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Dynamic Scheduling by Decomposition?	



Consider a Simple Example	



C 

D 

B 

[2,11]	



A [1,1]	



[1,10]	



[0,9]	

 [2,2]	



[1,1]	



•  Select executable timepoint and assign	



•  Propagate assignment to neighbors	



A t = 0 

t = 3 

[2, 2] 

[4, 4] 

Uh oh! 	



C at t =2 is in the past! 	


[Muscettola, Morris, Tsamardinos KR98]	
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Dynamic Scheduling by Decomposition?	



•  Fix by scheduling according to implied orderings. 
–  A <= C < B < D 

C 

D 

B 

[2,11]	



A [1,1]	



[1,10]	



[0,9]	

 [2,2]	



[1,1]	



A t = 0 

t = 3 

[2, 2] 

[4, 4] 

[Muscettola, Morris, Tsamardinos KR98]	
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Generalizations of Dynamic Execution 

1.  Dynamically choose a) when, b) by whom,  
c) which method, and d) how. 

2.  Achieve consistency wrt models of  
uncontrollable events. 

•  Temporal Plan Networks (under Uncertainty) 
•  Disjunctive Temporal Networks (under Uncertainty) 

 [0,0][0,
0]

[0,
0] D[0,0]

ActivityC [1,2]

[0,0]

JI

[0,0]
[0,0]

[0,3]

HG

E F
ActivityA 14,5]

ActivityB [2,5]

K L M N
ActivityD [1,2]

A B

[0,0]

[0,0]

[0,0]

[0,
0]

C

[0,3]
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Multi-Robot Teamwork  

Remove one ball from red bin. 

Remove one ball from blue bin. 

Remove one ball from green bin. 

Remove one ball from pink bin. 

Swap black striped ball 

•  Right Robot picks up and 
offers ball. 
•  Robots perform hand-to-
hand swap. 

Swap red striped ball 

•  Left Robot picks up and 
offers ball. 
•  Robots perform hand-to-
hand swap. 

  tstart 
  
tfinish 

(Someone) Remove one ball from red bin. 

Remove one ball from red bin. 

L[32,39] V R[42,55] 

OR 

Agents choose and 
schedule activities. 
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Multi-Robot Teamwork  

•  Off-nominal. 

•  Partner adapts 
in response to 
teammate’s 
failure.  

Kim, Williams, Abramson IJCAI 2001; 
Shah and Williams ICAPS 2009; 
Conrad, Shah and Williams ICAPS 2010 
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Leader  &  Assistant	



Embed video arm4_4x here 

Assistant waits to see what Leader will do before acting. 

Idea: model leader durations and assignments as uncontrollable (TPNU). 

Leader Assistant 

Shah and Williams ICAPS 2010 
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Achieve safety by adaptively 
executing plans on qualitative poses 

Left
Foot

[t_lb, t_ub]
CM

Right
Foot

start finish

right
toe-off

right
heel-strike

left
toe-off

left
heel-strike1llf ∈

1rrf ∈

2rrf ∈
2rrf ∈

2llf ∈

1cmcm∈

Input: Qualitative State Plan 

Lateral CM with push disturbance 
-  Blue   – 40 N 
-  Green – 35 N 
-  Black  – 25 N 
-  Red    – Max allowed 
               displacement 

 



Outline 

•  Robust, Goal-directed Execution 
•  Plan Dispatching 
•  Diagnosis and Mode Estimation 
•  Plan Generation 



Issues: 
•  Hidden failures 
•  Novel failures 
•  Multiple faults 
•  Intermittent failures 
•  Suble failures. 
•  HW / SW interactions 

46 
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Mode Estimation 

•  Mode estimates and kernels. 
•  By divide and conquer (GDE). 
•  Likely estimates and Conflict-directed A*. 
•  Mode reconfiguration. 
•  Estimating probabilistic (hybrid) 

constraint automata. 



Model-based Diagnosis 
Input: Observations of a system with symptomatic behavior, 

and a model Φ of the system.  

Output: Diagnoses that account for the symptoms. 

1	

 Symptom	

1	



0	



A	



B	


C	


D	



E	



F	



G	



X	



Y	



Z	



1	



1	


1	


0	



1	



0	



1	


1	



1	



A1 

A2 

A3 

X1 

X2 

A1 

X1 

48 



How Should Diagnoses  
Account for Novel Failures? 

Consistency-based Diagnosis: Given symptoms,  
find diagnoses that are consistent with symptoms. 

Suspending Constraints:  For novel faults, make  
no presumption about faulty component behavior. 

1	



0	



1	

 Symptom	

A	



B	


C	


D	



E	



1	



1	


1	


0	



1	



F	



G	



X	



Y	



Z	



0	



1	



A1 

A2 

A3 

X1 

X2 
[Davis, 84] 

[Geneserth, 84] 

[deKleer & Brown, 83] 
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Multiple Faults: Identify all Combinations  
of Consistent “Unknown” Modes 

•  Candidate:   Assignment of G or U to each component. 
•  Diagnosis:   Candidate consistent with model and observations. 

And(i): 
§  G(i):  

  Out(i) = In1(i) AND In2(i) 
§  U(i): No Constraint 

Diagnosis = {A1=G, A2=U, A3=G, X1=G, X2=U}	



A	



B	


C	


D	



E	



1	



1	


1	


0	



1	



F	



G	



X	



Y	



Z	



0	



1	



A1 

A3 

X1 

1	



0	



1	
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Incorporating (Failure) Modes:  
Mode Estimation 

Inverter(i): 
•  G(i):  Out(i) = not(In(i)) 
•  S1(i):  Out(i) = 1 
•  S0(i):  Out(i) = 0 
•  U(i): 

X	

 Y	

A	

 B	

 C	

0	

 0	



Idea: Include Nominal, Fault and Unknown Modes	



•  Isolates unknown faults.	


•  Explains known faults.	



Sherlock 
[de Kleer & Williams, IJCAI 89] 
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Partial Diagnosis	



   {A1=U, A2=U, X2=U}	



Compact Encoding: Partial Diagnoses 

Partial Diagnosis: 	


A partial mode assignment M, 	



that “removes all symptoms.”	


•  All full extensions of M are diagnoses.	



?	



?	



A	



B	


C	


D	



E	



1	



1	


1	


0	



1	



F	



G	



X	



Y	



Z	



0	



1	



A3 

X1 

1	



0	



1	



Extensions (Diagnoses):	


 {A1=U, A2=U, A3=G, X1=G, X2=U}	


 {A1=U, A2=U, A3=G, X1=U, X2=U}	


 {A1=U, A2=U, A3=U, X1=G, X2=U}	


 {A1=U, A2=U, A3=U, X1=U, X2=U}	
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Kernel Diagnosis	



   {A2=U, X2=U}	



Compact Encoding: Kernel Diagnoses 

Partial Diagnosis: 	


A partial mode assignment M, 	



that “removes all symptoms”.	


•  All full extensions of M are diagnoses.	



Kernel Diagnosis: 	


A partial diagnosis K, ���
no subset of which is a partial diagnosis.	



?	


?	



?	



A	



B	


C	


D	



E	



1	



1	


1	


0	



1	



F	



G	



X	



Y	



Z	



0	



1	



A1 

A3 

X1 

1	



0	



1	
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Mode Estimation 

•  Mode estimates and kernels. 
•  By divide and conquer (GDE). 
•  Likely estimates and Conflict-directed A*. 
•  Mode reconfiguration. 
•  Estimating probabilistic (hybrid) 

constraint automata. 



Conflicts Explain How to  
Remove Symptoms 
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A	



B	


C	


D	



E	



1	



1	


1	


0	



F	



G	



X	



Y	



Z	


Symptom: ���
    F is observed 0, but predicted to be 1 if A1, A2 and X1 are okay.	


Conflict 1: 	

{A1=G, A2=G, X1=G} is inconsistent.	



Conflict: 	

An inconsistent partial assignment to mode variables X.	



F	

 0	


1	



1	



0	



→ One of A1, A2 or X1 must be broken. 

1	



A1 

A2 

A3 

X1 

X2 

Symptom	





Second Conflict 
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Symptom: 	

G is observed 1, but predicted 0.	


Conflict 2: 	

{A1=G, A3=G, X1=G, X2=G} is inconsistent.	



Symptom	



1	



1	



A	



B	


C	


D	



E	



F	



G	



X	



Y	



Z	



1	



1	


1	


0	



1	



0	



1	


1	



0	



A1 

A2 

A3 

X1 

X2 

Conflicting modes aren’t always 
upstream from symptom.	



→ One of A1, A3, X1 or X2 must be broken. 



Kernel Diagnoses =	



Candidate Generation: 
Generate Kernels From Conflicts  

{A1=U, A2=U, X1=U} 	

 	

diagnoses for Conflict 1.	


{A1=U, A3=U, X1=U, X2=U}  	

diagnoses for Conflict 2.	



“Smallest” sets of modes that remove all conflicts.	



{A1=G, A2=G, X1=G} 	

 	

 	

 	

Conflict 1.	


{A1=G, A3=G, X1=G, X2=G} 	

 	

 	

Conflict 2.	
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Kernel Diagnoses = 	

{A1=U}	



“Smallest” sets of modes that remove all conflicts.	



{A1=U, A2=U, X1=U} 	

 	

diagnoses for Conflict 1.	


{A1=U, A3=U, X1=U, X2=U}   	

diagnoses for Conflict 2.	



Candidate Generation: 
Generate Kernels From Conflicts  

{A1=G, A2=G, X1=G} 	

 	

 	

 	

Conflict 1.	


{A1=G, A3=G, X1=G, X2=G} 	

 	

 	

Conflict 2.	



1.  Compute cross product. 
2.  Remove supersets. 

•  Old subset New. 
•  New subset Old. 
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Kernel Diagnoses = 	

{X1=U}���
	

 	

 	

{A2=U, X2=U}���
	

 	

 	

{A2=U, A3=U}���
	

 	

 	

{A1=U}	



“Smallest” sets of modes that remove all conflicts.	



Candidate Generation: 
Generate Kernels From Conflicts  

{A1=U, A2=U, X1=U} 	

 	

constituents of Conflict 1.	


{A1=U, A3=U, X1=U, X2=U}   	

constituents of Conflict 2.	



{A1=G, A2=G, X1=G} 	

 	

 	

 	

Conflict 1.	


{A1=G, A3=G, X1=G, X2=G} 	

 	

 	

Conflict 2.	



1.  Compute cross product. 
2.  Remove supersets. 

•  Old subset New. 
•  New subset Old. 
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Mode Estimation 

•  Estimates and kernels. 
•  By divide and conquer (GDE). 
•  Likely estimates and Conflict-directed A*. 
•  Mode reconfiguration. 
•  Estimating probabilistic (hybrid) 

constraint automata. 



   When you have eliminated the impossible, 
whatever remains, however improbable,  
must be the truth.     

- Sherlock Holmes. The Sign of the Four. 

Mode Estimation as 	


Conflict-directed Best First Search	



1.  Generate most likely hypothesis.	


2.  Test hypothesis.	


3.  If inconsistent, learn reason for inconsistency ���

(a conflict).	


4.  Use conflicts to leap over similarly infeasible options ���

to next best hypothesis.	
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Compare Most Likely Hypothesis to Observations 

Helium tank	



Fuel tank	

Oxidizer tank	



Main	


Engines	



Flow1 = zero	


Pressure1 = nominal	



Pressure2= nominal	



Acceleration = zero	



It is most likely that all components are okay.	
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Isolate Conflicting Information 

Helium tank	



Fuel tank	

Oxidizer tank	



Main	


Engines	



	


Flow 1= zero	



The red component modes conflict with the model and observations.	
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Helium tank	



Fuel tank	

Oxidizer tank	



Main	


Engines	



	


Flow 1= zero	



Leap to the Next Most Likely Hypothesis 
that Resolves the Conflict 

The next hypothesis must remove the conflict. 	
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New Hypothesis Exposes Additional Conflicts 

Pressure1 = nominal	

 Pressure2= nominal	



Acceleration = zero	



Helium tank	



Fuel tank	

Oxidizer tank	



Main	


Engines	



Another conflict, try removing both.	
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Final Hypothesis Resolves all Conflicts  

Helium tank	



Fuel tank	

Oxidizer tank	



Main	


Engines	



Pressure1 = nominal	


Flow1 = zero	



Pressure2= nominal	


Flow2 = positive	



Acceleration = zero	



Implementation: Optimal CSPs and Conflict-directed A*.	
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Reconfiguring Modes using 
Conflict-directed A* 

Goal: Achieve Thrust 

A conflict is a partial assignment to mode variables that 
prevents goal achievement (entails the negation of the goal). 

arg max Rt(Y) 
s.t. Ψ(X,Y) entails G(X,Y) 
s.t. Ψ(X,Y) is consistent 
Y are reachable modes 
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Mode Estimation 

•  Estimates and kernels. 
•  By divide and conquer (GDE). 
•  Likely estimates and Conflict-directed A*. 
•  Mode reconfiguration. 
•  Estimating probabilistic (hybrid)  

constraint automata. 
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Tracking Mode Changes Over Time 

•  PCCA encode an HMM compactly 
through concurrency and constraints.  

•  Mode estimation abstracts state to modes.  
	


Assumes:	


•  Transitions only permitted on modes. 

•  Transitions are conditionally independent. 
•  For each time t,  

all consistent assignments are equally likely. 

Standby 

Engine Model 
Off 

Failed 
off- 
cmd 

standby- 
cmd 

0.01 

(thrust = full) AND 
(power_in = nominal) 

Firing 
0.01 

standby- 
cmd 

fire- 
cmd 

(thrust = zero) AND 
(power_in = zero) 

(thrust = zero) AND 
(power_in = nominal) 

On 

Camera Model 
Off 

turnoff- 
cmd 

turnon- 
cmd 

(power_in = zero) 
AND 
(shutter = closed) 

(power_in = nominal) 
AND 
(shutter = open) 

0 v 

2 kv 

2 
kv 

0 v 

0 
v 

20 v 

0.01 

0.01 

0 
v 
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S T

X0 X1 XN-1 XN

• Assigns a value to each variable 
(e.g.,3,000 vars). 
• Consistent with all state 
constraints (e.g., 12,000). 

• A set of concurrent transitions, one per 
automata (e.g., 80). 
• Previous & Next states consistent with 
source & target of transitions 

Mode Estimation as Belief State 
Update for Concurrent PCA	



1.   Infer most likely mode trajectories. 
2.   Infer distribution on likely mode assignments. 
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Approximating The Belief State 
Best-first Trajectory Enumeration (BFTE): 

[Williams and Nayak, AAAI-96][Kurien and Nayak, AAAI-00][Williams et 
al., IEEE ’03] 

•  Best-first State Enumeration (BFSE): 
[Martin, Williams and Ingham, AAAI-05] 

–  Improves accuracy through compact encoding. 
–  Accuracy improves runtime! 

Deep Space One 

Earth Observing One 

0.4 

0.2 

0.7 

0.3 



Monitoring Complex Hardware / Software Systems 
through Hierarchical Probabilistic Constraint Automata 

Example: 
  Rover Image 
  Acquisition 



Estimating Hybrid States from Noisy Observations 

Continuous 
state 

Discrete 
mode 

Hybrid probabilistic constraint automata 
–  Stochastic transitions between discrete modes 

–  Different continuous dynamics for each mode 

holding Driving 
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1.  Free 
2.  Driving 
3.  Holding 
4.  Backdriven 

Kalman Filters Track Subset of Trajectories 

[Blackmore, Funiak, Williams AAAAI 05] 



Outline 

•  Robust, Goal-directed Execution 
•  Plan Dispatching 
•  Diagnosis and Mode Estimation 
•  Plan Generation 



Planning 

Find:"
"program of actions that achieves the objective."

Based on slides from David Smith, NASA Ames. 



Planning 

Find:"
"program of actions that achieves the objective."

partially-ordered set of actions." Goals."

typically unconditional."

no loops."

Based on slides from David Smith, NASA Ames. 



Paradigms 

Classical planning,"
(STRIPS, operator-based, first-principles)"
“generative.”"

Hierarchical Task Network planning,"
“practical” planning."

MDP & POMDP planning,"
planning under uncertainty."



Classical Problem Statement 

Operators:"

Goals:" Goal1" Goal2" Goal3"

Op"

pre1"

pre2"

pre3"

eff1"

eff2"

Initial Conditions:" P1" P2" P3" P4"

Propositions:" Pi"



Simple Spacecraft Problem 

Observation-1"
target"
instruments"

Observation-2"
Observation-3"
Observation-4"
…"

calibrated"

pointing"

Propositions:  Target Pointed To, Camera Calibrated?, Has Image? 
Operators:  Calibrate, Turn to Y, and Take Image. 



Example 

Ix"Im"
c"

px"

pC"

Init" Actions"

C" c"

Ty"
¬px"

py"
px"

IA"

Goal"

pC"

Propositions:  Target Pointed To, Camera Calibrated?, Has Image? 
Operators:  Calibrate, Turn to Y, and Take Image. 



Based on slides by Dave Smith, NASA Ames"

Planning Domain Description 
Language (PDDL) 

(:action TakeImage :parameters (?target, ?instr)"
:precondition (and (Status ?instr Calibrated) "

" "        (Pointing ?target))"
:effect "(Image ?target)) " ""

"
(:action Calibrate :parameters (?instrument)"

:precondition (and (Status ?instr On) "
" "        (Calibration-Target ?target), "
" "        (Pointing ?target)"

:effect "(and (not (Status ?inst On)) "
" "        (Status ?instr Calibrated)))"

"
(:action Turn :parameters (?target)"

:precondition (and (Pointing ?direction) "
" "        ?direction ≠ ?target)"

:effect "(and (not (Pointing ?direction) "
" "        (Pointing ?target))) ""

By convention, 
parameters start with 
“?”, as in ?var. 



Based on slides by Dave Smith, NASA Ames"

Planning Paradigms 
•  From Goals 

–  Goal Regression 
–  (SNLP, UCPOP, Burton, 

 Europa, Aspen, …) 

•  From Initial State. 
–  Heuristic Forward Search 
–  (FF, HSP, Colin …) 

•  By Solving Constraints. 
–  Plan Graphs 
–  (SatPlan, Blackbox, Kongming …) 

IA" F"

pC"

S"

T
A" ¬pC"

C"

Im"
c"

pA"
pC"

Proposition 
Init State 

Action 
Time 1 

Proposition 
Time 1 

Action 
Time 2 

IA" F"

pC"

S" T
A"

¬pC"

C" Im"
c"

pA"
pC"

Partial order plan 

Total order plan 



Based on slides by Dave Smith, NASA Ames"

Continuously replanning as a human helps and hinders. 
Planner: heuristic forward search."



Assumptions of Classic Planning 

84 

•  Atomic time, 
•  Agent is omniscient  

(no sensing necessary),  

•  Agent is sole cause of 
change, 

•  Actions have deterministic 
effects, and 

•  No indirect effects. 

TakeImage (?target, ?instr):"
Pre: Status(?instr, Calibrated),  
        Pointing(?target)"
Eff: " Image(?target) " ""

"
Calibrate (?instrument):"

Pre: Status(?instr, On),  
        Calibration-Target(?target),  
        Pointing(?target)"
Eff:   ¬Status(?inst, On),  
         Status(?instr, Calibrated)"

"
Turn (?target):"

Pre: Pointing(?direction),  
       ?direction ≠ ?target"
Eff:  ¬Pointing(?direction),  
        Pointing(?target) ""



Based on slides by Dave Smith, NASA Ames"

The Simple Spacecraft Revisited: 
Complications 

Observation-1"
priority"
time window"
target"
instruments"
duration"

Observation-2"
Observation-3"
Observation-4"
…" Objective:"

maximize science return."



Based on slides by Dave Smith, NASA Ames"

Observation-1"
priority"
time window"
target"
instruments"
duration"

Observation-2"
Observation-3"
Observation-4"
…"

calibration"
target1"
target2"
…"

consumables:"
fuel"
power"
data storage"
cryogen"

angle between targets"
⇒ turn duration"

Objective:"
maximize science return"

lin
ke

d"
The Simple Spacecraft Revisited: 

Complications 



Based on slides by Dave Smith, NASA Ames"

More Expressive Planners Include 

Time "

Resources"

Utility"

Uncertainty"

Hidden State"

Indirect Control"

Reasoning methods:"

STNs or CSPs,"

LPs or CSPs,"

MDPs or MILPs,"

HMMs or BNs,"

HMMs or OCSPs,"

LPs or RPs."



EUROPA	


Automated 	



Planning System	



Science	


Navigation	



Engineering	


Resource	



Constraints	



DSN/Telcom	



Flight Rules	



Science Team 

Sequence 
Build 

MAPGEN: Automated 
Science Planning for MER NASA Ames 



Planning Back from Goals:   
Partial Order Causal Link Planning  

(SNLP, UCPOP, Europa, Aspen, Burton) 
1. Select an open condition; "
2. Choose an op that can achieve it:"

Link to an existing instance or"
Add a new instance; "

3. Resolve threats."

IA" F"

Im"
c"

pA"

IA" F"

pC" C"
Im" IA" F"

c"

pA"

C"pC"

Im"
IA" F"

c"

pA"

S"

TA"
¬pC"

C"pC"

Im"
IA" F"

c"

pA"
S"

pC"

IA" F"

pC"

S"

TA"
¬pC"

C"
Im"

c"

pA"
pC"



Helium tank	



Fuel tank	

Oxidizer tank	



Main	


Engines	



1553 bus 
C

om
m

and
s 

D
ata 

PDE 

SRU 

PDU 

GDE 

PASM 

DSEU 

PEPE 

BC 

Flight 
Computer 

Flight 
Computer 

BC 

PDE 

Burton: Reactive Planning with Indirect Effects 

[Williams & Nayak, IJCAI 97] 

When causal interactions are acyclic, 
 and actions are reversible, 

The first action in the plan can be generated in ~ constant time. 



Sulu: Goal-directed Control 

Command script 

00:00 Go to x1,y1 
00:20 Go to x2,y2 
00:40 Go to x3,y3 
… 
04:10 Go to xn,yn 

Plant 

Commands 

[Leaute & Williams, AAAI 05] 



Sulu: Goal-directed Control 

 
Model-based Executive 

Observations Commands 

“Explore mapping region for at least 
100m, then explore bloom region for at 
least 50m, then return to pickup region. 
Avoid obstacles at all times.” 

Qualitative State Plan 

Plant 

[Leaute & Williams, AAAI 05] 

Optimal 
 
Robust 



Sulu: Goal-directed Control 

Remain in [safe region] 

Explore 
[bloom region] 

e1 e5 

Explore 
[mapping region] e2 e3 e4 

End in 
[pickup region] 

[50,70] [40,50] 

[0,300] 

Obstacle 
1 

Obstacle 2 

Mapping 
Region 

Bloom 
Region Pickup 

Region 

“Explore bloom region for between 50 and 70 
seconds. Afterwards, explore mapping region 
for between 40m and 50m. End in the pickup 
region. Avoid obstacles at all times. Complete 
the mission within 300m.” 

Approach: Frame as Model-Predictive Control 
using Mixed Logic or Integer / Linear Programming. 

Leaute & Williams, AAAI 05 

A qualitative state plan is a plan of activities that  
specifies desired states rather than executable actions and  
provides flexibility in state and time. 
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Sulu Depth Navigation for Bathymetric Mapping – Jan. 23rd, 08 

Problem: Managing Risk within Mission-Guidelines 



Adding Risk Sensitivity 

Remain in [safe region] 

Explore 
[bloom region] 

e1 e5 

Explore 
[mapping region] e2 e3 e4 

End in 
[pickup region] 

[50,70] [40,50] 

[0,300] 

2. p( End in [goal region] fails OR Remain in [safe region] fails ) < 1%. 
 

1. p( Remain in [bloom region] fails OR Remain in [mapping region] fails ) < 10%. 
 

Chance constraints: 

1. Science Activities 

2. Safety Activities 

Instance of Chance-constrained Model-based Programming. 



P Sulu creates safety margin that satisfies  
risk bounds and maximizes expected utility 

Start Start 

Goal 

Safety margin 

Walls 

Goal 
Walls 

Safety margin 

(a) Uniform width safety margin (b) Uneven width safety margin 

(b) results in better path → takes risk when most beneficial 

[Ono & Williams, AAAI 08] Problem: How do we find the best safety margin? 



Based on slides by Dave Smith, NASA Ames"

Model-based Executives"

1.  Commanded through time evolved goals. 
2.  Reasons from commonsense models.  
3.  Closes loop on goals. 
4.  Model-based programs specify goals and models. 

Goals 	



Mode	


Estimation & 

Reconfiguraton	



Mission 
Manager/

MPC	



Plan	


Dispatcher	



Planner/	


Scheduler	





QUESTIONS? 

For More: Go to MIT Open Course Ware: 
-  16.410  Principles of Autonomy and Decision Making 
-  16.412  Cognitive Robotics 


