
courtesy of JPL

Autonomy Practices:
Decision-making Architectures

Brian C. Williams, MIT
July 30th, 2012

Brian C. Williams, copyright 2000

Publications at: mers.csail.mit.edu

KISS Workshop on
Engineering Resilient Space Systems

Desiderata

Provide a programming paradigm that enables
robotic systems:

•  to be commanded simply and intuitively;
•  to adapt to uncertainty and failure;
•  to communicate at a cognitive level;
•  to work fluidly with humans, and
•  to manage risk taking effectively.

Space Autonomy Architectures

•  Autonomous Operation
– Cassini AACS, Remote Agent,

MDS, Titan
•  Autonomous Science

– Autonomous Sciencecraft Experiment
•  Autonomous Navigation

– ClarAty, MERS DIME & Gestalt

•  Mixed Initiate Interaction
– MapGen + descendants

Outline

•  Robust, Goal-directed Execution
•  Plan Dispatching
•  Diagnosis and Mode Estimation
•  Plan Generation

Remote Agent on Deep Space One

1.  Commanded by giving goals
2.  Reasoned from

commonsense models
3.  Closed loop on goals

Goals	

Diagnosis
& Repair	

Mission
Manage

r	

Executive	

Planner/	

Scheduler	

Remote Agent	

[Muscettola et al, AIJ 00;
Williams & Nayak, AAAI 95]

Remote Agent Experiment
on Deep Space 1 – May, 1999

May 17-18th experiment: Mission-level Fault Protection
•  Generate plan for course correction and thrust
•  Diagnose camera as stuck on

–  Power constraints violated, abort current plan
 & replan

•  Perform optical navigation
•  Perform ion propulsion thrust

May 21th experiment: Engineering-level Fault Protection
•  Diagnose faulty device and

–  Repair by issuing reset.
•  Diagnose switch sensor failure.

–  Determine harmless, and continue plan.
•  Diagnose thruster stuck closed and

–  Repair by switching to alternate method
of thrusting.

•  Back to back planning

Model-based Autonomy

– An embedded programming languages
elevated to the goal-level through operations on
hidden state (RMPL).

– A language executive that achieves robustness by
reasoning over constraint-based models (Titan).

–  Interfaces that support natural human interaction
fluidly and at the cognitive level.

engine to standby	

Rotate spacecraft:	

•  command ACS to entry orientation	

planetary approach	

separate���
lander	

switch to���
inertial nav	

 rotate to entry-orient���

& hold attitude	

Commanding with Goals: System Engineers
Specify Missions in Terms of Evolving States

[Titan Executive,
 Williams et al., IEEE Procs 03]

engine to standby	

Separate lander from cruise stage:	

planetary approach	

separate���
lander	

switch to���
inertial nav	

 rotate to entry-orient���

& hold attitude	

cruise���
stage	

lander���
stage	

pyro���

latches	

Commanding with Goals: System Engineers
Specify Missions in Terms of Evolving States

[Titan Executive,
 Williams et al., IEEE Procs 03]

Autonomous Systems are Commanded
in Terms of Evolving Goal States

Embedded programs evolve actions
by interacting with plant sensors
and actuators:

•  Read sensors

•  Set actuators

Embedded Program

S
Plant

Obs Cntrl

Model-based programs evolve
abstract states through direct
interaction:

•  Read abstract state

•  Write abstract state

Model-based
Embedded Program

S
Plant

Model-based executive maps
between state and sensors/actuators.

S’
Model-based Executive

Obs Cntrl

Programmer maps between state
and sensors/actuators.

Model-based Programs
Specify and Execute Evolving States

Turn camera off and 	

engine on	

EngineA EngineB

Science Camera

OrbitInsert()::

 do-watching (EngineA = Thrusting OR
 EngineB = Thrusting)
 parallel {
 EngineA = Standby;
 EngineB = Standby;
 Camera = Off;
 do-watching (EngineA = Failed)
 {when-donext (EngineA = Standby) AND
 Camera = Off)
 EngineA = Thrusting};
 when-donext (EngineA = Failed AND
 EngineB = Standby AND
 Camera = Off)
 EngineB = Thrusting}

[Titan Executive,
 Williams et al., IEEE Procs 03]

The program assigns EngineA = Thrusting,
and the model-based executive

Determines that valves	

on the backup engine B���
will achieve thrust, and���
plans needed actions.	

Deduces that a valve 	

failed - stuck closed	

Plans actions	

to open	

six valves	

Fuel tank	

Oxidizer tank	

Deduces that	

thrust is off, and���

the engine is healthy	

Prog: EngineB = Thrusting

Identify Modes

Diagnose Failure Modes

Reconfigure Modes

Repair Modes

Behaviors Generated from a Plant Model

Standby

Engine Model

Off

Failed

Firing

component modes…

(thrust = full) AND
(power_in = nominal)

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

 described by finite domain constraints on variables…

 deterministic and probabilistic transitions

off-
cmd

standby-
cmd

0.01

0.01
standby-

cmd
fire-
cmd

 cost/reward

0 v

0 v

2 kv

2 kv

one per component … operating concurrently

On

Camera Model

Off

turnoff-
cmd

turnon-
cmd

(power_in = zero) AND
(shutter = closed)

(power_in = nominal) AND
(shutter = open)

0 v

20 v

0.01

0.01

0 v

[Titan Executive,
 Williams et al., IEEE Procs 03]

Control Sequencer

Deductive Controller

System Model	

Commands	

Observations	

Control Program

Plant	

Titan Model-based Executive	

RMPL Model-based Program	

Goals	

Estimates	

Generates target goal states	

conditioned on state estimates	

Mode	

Estimation	

Mode	

Reconfiguration	

Tracks	

likely ���
modes	

Tracks least cost 	

modes achieving	

goal states	

l  Executes concurrently	

l  Preempts	

l  Queries (hidden) states	

l  Asserts (hidden) state	

OrbitInsert()::
(do-watching ((EngineA = Firing) OR
 (EngineB = Firing))
 (parallel
 (EngineA = Standby)
 (EngineB = Standby)
 (Camera = Off)

 (do-watching (EngineA = Failed)
 (when-donext ((EngineA = Standby) AND
 (Camera = Off))
 (EngineA = Firing)))
 (when-donext ((EngineA = Failed) AND
 (EngineB = Standby) AND
 (Camera = Off))
 (EngineB = Firing))))

Closed

Valve
Open Un-

known

Stuck
closed

Open Close

0. 01

0. 01

0.01

0.01

inflow iff outflow

[Williams et al., IEEE Procs 03]

Control Sequencer

Deductive Controller

System Model	

Commands	

Observations	

Control Program

Plant	

Titan Model-based Executive	

RMPL Model-based Program	

Goals	

Estimates	

Mode	

Estimation	

Mode	

Reconfiguration	

l  Executes concurrently	

l  Preempts	

l  Queries (hidden) states	

l  Asserts (hidden) state	

Architecture similar to
•  Cassini AACS FP
•  MDS

A kind of autonomous configuration
and health management system.

Control Programs are like State Charts

Navigation, Risk and Mixed Interaction:
Personal Transportation System

Complements of Branko Sarh, Boeing Research

Observations Commands

Plant

Model-based Executive

User Interface

GUI

Sulu
Navigates with
continuous actions
(goal-directed
model-predictive
controller)

Kongming Pieces together
discrete actions
(hybrid generative
planner)

Kirk Chooses
between user
specified options
(TPN planner)

Planner C
oordinator

Speech

Model-based Executives

1.  Commanded through time evolved goals.
2.  Reasons from commonsense models.
3.  Closes loop on goals.
4.  Model-based programs specify goals and models.

Goals 	

Mode	

Estimation &

Reconfiguraton	

Mission
Manager/

MPC	

Plan	

Dispatcher	

Planner/	

Scheduler	

Outline

•  Robust, Goal-directed Execution
•  Plan Dispatching
•  Diagnosis and Mode Estimation
•  Plan Generation

21

Supports Time Critical Missions	

22

An effective Scrub Nurse:
•  works hand-to-hand, face-to-face with surgeon,

•  assesses and anticipates needs of surgeon,

•  provides assistance and tools in order of need,

•  responds quickly to changing circumstances,

•  responds quickly to surgeon’s cues and requests.

Supports Robot & Human Coordination	

[Shah, Conrad and Williams, ICAPS 09]	

23

Robust Plan Execution

Start End
Rover1.goto(p4)

Rover2.goto(p1)

Rover1.imageTargets Rover1.goto(p5) Rover1.goto(p3)

Rover2.goto(p2) Rover2.imageTargets Rover2.goto(p3)

imageScienceTargets(Rover1, Rover2)
{Parallel
 {Sequence
 [5,10] Rover1.goto(p4);
 [5,10] Rover1.goto(p5);
 [2,5] Rover1.imageTargets();
 [5,10] Rover1.goto(p3);
 },
 {Sequence
 [5,10] Rover2.goto(p1);
 [5,10]Rover2.imageTargets();
 [2,5] Rover2.goto(p2);
 [5,10] Rover2.goto(p3);
 }
}

p1

p2 p3

p4

p5 1

2

[5,10] [5,10] [2,5] [5,10]

[5,10] [5,10] [2,5] [5,10]

Agents adapt to temporal disturbances in a coordinated manner
by scheduling the start of activities on the fly.

in RMPL [williams et al]	

[Muscettola, Morris, Tsamardinos,KR 98]	

24

Outline: To Execute a Temporal Plan	

offline
online

	

3. Schedule Plan	

	

1. Describe Temporal Plan	

	

	

	

2. Test Consistency	

	

4. Execute Plan	

	

Schedule Off-line Schedule Online

	

4. Dynamically Schedule Plan	

	

	

3. Reformulate Plan	

	

2. Test Consistency	

	

1. Describe Temporal Plan	

	

	

25

Describe Temporal Plan	

	

Example: Deep Space One Remote Agent Experiment	

Max_Thrust Idle Idle

Poke

Timer

Attitude

Accum thrust

SEP Action

SEP_Segment

Th_Seg

contained_by"

equals" equals"meets"
meets"

contained_by"

Start_Up Start_Up Shut_Down Shut_Down

Thr_Boundary

Thrust Thrust Thrust Thrust Standby Standby Standby

Th_Sega Th_Seg Th_Seg Idle_Seg Idle_Seg

Accum_NO_Thr Accum_Thr Accum_Thr Accum_Thr Thr_Boundary

contained_by"

CP(Ips_Tvc) CP(Ips_Tvc) CP(Ips_Tvc)

contained_by"

Th_Seg

26

Input:	

An STN <X, C> where Cj = <<Xk, Xi><aj,bj>>	

	

	

	

	

	

	

Output: An assignment to X satisfying C.	

	

	

	

 	

	

 	

	

 	

	

 	

	

 	

A=0, B=2, C=1, D=3	

Scheduling a Simple Temporal Network (STN)	

[1,10]	

[0,9]	

[1,1]	

[2,2]	

A	

B	

C	

D	

27

Scheduling without Search

X0 Ls Le

Ss Se

[10,20] [30,40]

[10,20]

[40,50]

[60,70]

Idea: Expose Implicit Constraints in STN
•  Input: STN.
•  Output: “Decomposable” (Implied) STN -> Schedule.

X0	

 Ls	

 Le	

S s	

 S e	

[40,50]	

[10,20]	

 [30,40]	

[20,30]	

[10,20]	

[60,70]	

[40,50]	

[20,30]	

28

Scheduling without Search

Input: Decomposable STN (APSP D-Graph)
Output: Schedule (Assignment to X, consistsent with STN)
Property: Can assign variables in any order, without backtracking.

X0	

 Ls	

 Le	

S s	

 S e	

[40,50]	

[10,20]	

 [30,40]	

[20,30]	

[10,20]	

[60,70]	

[40,50]	

[20,30]	

Key ideas

•  Incrementally tighten feasible intervals,
 as commitments are made.

29

Scheduling without Search

Key ideas

•  Incrementally tighten feasible intervals,
 as commitments are made.

X0	

 Ls	

 Le	

S s	

 S e	

[40,50]	

[10,20]	

 [30,40]	

[20,30]	

[10,20]	

[60,70]	

[40,50]	

[20,30]	

•  Select value for X0	

	

 	

	

t=0

Input: Decomposable STN (APSP D-Graph)
Output: Schedule (Assignment to X, consistsent with STN)
Property: Can assign variables in any order, without backtracking.

30

Scheduling without Search

X0	

 Ls	

 Le	

S s	

 S e	

[40,50]	

[10,20]	

 [30,40]	

[20,30]	

[10,20]	

[60,70]	

[40,50]	

[20,30]	

•  Select value for X0	

	

 	

	

t=0

[10,20]

Input: Decomposable STN (APSP D-Graph)
Output: Schedule (Assignment to X, consistsent with STN)
Property: Can assign variables in any order, without backtracking.

[20,30]

[60,70]

[40,50]

Key ideas

•  Incrementally tighten feasible intervals,
 as commitments are made.

31

Scheduling without Search

X0	

 Ls	

 Le	

S s	

 S e	

[40,50]	

[10,20]	

 [30,40]	

[20,30]	

[10,20]	

[60,70]	

[40,50]	

[20,30]	

•  Select value for X0	

•  Select value for Ls,
consistent with X0	

	

 	

	

t=0

 t=15

Input: Decomposable STN (APSP D-Graph)
Output: Schedule (Assignment to X, consistsent with STN)
Property: Can assign variables in any order, without backtracking.

[20,30]

[60,70]

[40,50]

Key ideas

•  Incrementally tighten feasible intervals,
 as commitments are made.

32

Scheduling without Search

X0	

 Ls	

 Le	

S s	

 S e	

[40,50]	

[10,20]	

 [30,40]	

[20,30]	

[10,20]	

[60,70]	

[40,50]	

[20,30]	

•  Select value for X0	

•  Select value for Ls,
consistent with X0	

	

 	

	

t=0

 t=15

Input: Decomposable STN (APSP D-Graph)
Output: Schedule (Assignment to X, consistsent with STN)
Property: Can assign variables in any order, without backtracking.

[25,30]

[65,70]

[45,50]

Key ideas

•  Incrementally tighten feasible intervals,
 as commitments are made.

33

Scheduling without Search

X0	

 Ls	

 Le	

S s	

 S e	

[40,50]	

[10,20]	

 [30,40]	

[20,30]	

[10,20]	

[60,70]	

[40,50]	

[20,30]	

•  Select value for X0	

•  Select value for Ls,
consistent with X0	

•  Select value for Le,
consistent with X0, Ls	

•  Select value for Ss,
consistent with X0, Ls,
Le	

•  Select value for Se…	

	

 	

	

t=0

 t=15

Input: Decomposable STN (APSP D-Graph)
Output: Schedule (Assignment to X, consistsent with STN)
Property: Can assign variables in any order, without backtracking.

 t=30

t=70

t=45

Key ideas

•  Incrementally tighten feasible intervals,
 as commitments are made.

34

Flexible Execution	

offline
online

	

3. Schedule Plan	

	

1. Describe Temporal Plan	

	

	

	

2. Test Consistency	

	

4. Execute Plan	

	

Schedule Off-line Problem: delays and fluctuations in task
duration can cause plan failure.	

	

Observation: Least commitment
temporal plans leave room to
adapt.	

	

Flexible Execution adapts through
dynamic scheduling [Muscettola et al]	

–  Assigns time to event when

executed.	

35

Flexible Execution	

offline
online

	

3. Schedule Plan	

	

1. Describe Temporal Plan	

	

	

	

2. Test Consistency	

	

4. Execute Plan	

	

 Schedule Off-line Schedule Online

	

4. Dynamically Schedule Plan	

	

	

3. Reformulate Plan	

	

2. Test Consistency	

	

1. Describe Temporal Plan	

	

	

36

Dynamic Scheduling by Decomposition?	

Consider a Simple Example	

C

D

B

[2,11]	

A [1,1]	

[1,10]	

[0,9]	

 [2,2]	

[1,1]	

•  Select executable timepoint and assign.	

•  Propagate assignment to neighbors.	

[Muscettola, Morris, Tsamardinos KR98]	

37

Dynamic Scheduling by Decomposition?	

Consider a Simple Example	

C

D

B

[2,11]	

A [1,1]	

[1,10]	

[0,9]	

 [2,2]	

[1,1]	

•  Select executable timepoint and assign.	

•  Propagate assignment to neighbors.	

A t = 0

[1, 10]

[0, 9]

[2, 11]

[Muscettola, Morris, Tsamardinos KR98]	

38

Dynamic Scheduling by Decomposition?	

Consider a Simple Example	

C

D

B

[2,11]	

A [1,1]	

[1,10]	

[0,9]	

 [2,2]	

[1,1]	

•  Select executable timepoint and assign	

•  Propagate assignment to neighbors	

A t = 0

t = 3

[2, 2]

[4, 4]

Uh oh! 	

C at t =2 is in the past! 	

[Muscettola, Morris, Tsamardinos KR98]	

39

Dynamic Scheduling by Decomposition?	

•  Fix by scheduling according to implied orderings.
–  A <= C < B < D

C

D

B

[2,11]	

A [1,1]	

[1,10]	

[0,9]	

 [2,2]	

[1,1]	

A t = 0

t = 3

[2, 2]

[4, 4]

[Muscettola, Morris, Tsamardinos KR98]	

40

Generalizations of Dynamic Execution

1.  Dynamically choose a) when, b) by whom,
c) which method, and d) how.

2.  Achieve consistency wrt models of
uncontrollable events.

•  Temporal Plan Networks (under Uncertainty)
•  Disjunctive Temporal Networks (under Uncertainty)

 [0,0][0,
0]

[0,
0] D[0,0]

ActivityC [1,2]

[0,0]

JI

[0,0]
[0,0]

[0,3]

HG

E F
ActivityA 14,5]

ActivityB [2,5]

K L M N
ActivityD [1,2]

A B

[0,0]

[0,0]

[0,0]

[0,
0]

C

[0,3]

41

Multi-Robot Teamwork

Remove one ball from red bin.

Remove one ball from blue bin.

Remove one ball from green bin.

Remove one ball from pink bin.

Swap black striped ball

•  Right Robot picks up and
offers ball.
•  Robots perform hand-to-
hand swap.

Swap red striped ball

•  Left Robot picks up and
offers ball.
•  Robots perform hand-to-
hand swap.

 tstart

tfinish

(Someone) Remove one ball from red bin.

Remove one ball from red bin.

L[32,39] V R[42,55]

OR

Agents choose and
schedule activities.

42

Multi-Robot Teamwork

•  Off-nominal.

•  Partner adapts
in response to
teammate’s
failure.

Kim, Williams, Abramson IJCAI 2001;
Shah and Williams ICAPS 2009;
Conrad, Shah and Williams ICAPS 2010

43

Leader & Assistant	

Embed video arm4_4x here

Assistant waits to see what Leader will do before acting.

Idea: model leader durations and assignments as uncontrollable (TPNU).

Leader Assistant

Shah and Williams ICAPS 2010

44

Achieve safety by adaptively
executing plans on qualitative poses

Left
Foot

[t_lb, t_ub]
CM

Right
Foot

start finish

right
toe-off

right
heel-strike

left
toe-off

left
heel-strike1llf ∈

1rrf ∈

2rrf ∈
2rrf ∈

2llf ∈

1cmcm∈

Input: Qualitative State Plan

Lateral CM with push disturbance
-  Blue – 40 N
-  Green – 35 N
-  Black – 25 N
-  Red – Max allowed
 displacement

Outline

•  Robust, Goal-directed Execution
•  Plan Dispatching
•  Diagnosis and Mode Estimation
•  Plan Generation

Issues:
•  Hidden failures
•  Novel failures
•  Multiple faults
•  Intermittent failures
•  Suble failures.
•  HW / SW interactions

46

47

Mode Estimation

•  Mode estimates and kernels.
•  By divide and conquer (GDE).
•  Likely estimates and Conflict-directed A*.
•  Mode reconfiguration.
•  Estimating probabilistic (hybrid)

constraint automata.

Model-based Diagnosis
Input: Observations of a system with symptomatic behavior,

and a model Φ of the system.

Output: Diagnoses that account for the symptoms.

1	

 Symptom	

1	

0	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

1	

1	

A1

A2

A3

X1

X2

A1

X1

48

How Should Diagnoses
Account for Novel Failures?

Consistency-based Diagnosis: Given symptoms,
find diagnoses that are consistent with symptoms.

Suspending Constraints: For novel faults, make
no presumption about faulty component behavior.

1	

0	

1	

 Symptom	

A	

B	

C	

D	

E	

1	

1	

1	

0	

1	

F	

G	

X	

Y	

Z	

0	

1	

A1

A2

A3

X1

X2
[Davis, 84]

[Geneserth, 84]

[deKleer & Brown, 83]

49

Multiple Faults: Identify all Combinations
of Consistent “Unknown” Modes

•  Candidate: Assignment of G or U to each component.
•  Diagnosis: Candidate consistent with model and observations.

And(i):
§  G(i):

 Out(i) = In1(i) AND In2(i)
§  U(i): No Constraint

Diagnosis = {A1=G, A2=U, A3=G, X1=G, X2=U}	

A	

B	

C	

D	

E	

1	

1	

1	

0	

1	

F	

G	

X	

Y	

Z	

0	

1	

A1

A3

X1

1	

0	

1	

50

Incorporating (Failure) Modes:
Mode Estimation

Inverter(i):
•  G(i): Out(i) = not(In(i))
•  S1(i): Out(i) = 1
•  S0(i): Out(i) = 0
•  U(i):

X	

 Y	

A	

 B	

 C	

0	

 0	

Idea: Include Nominal, Fault and Unknown Modes	

•  Isolates unknown faults.	

•  Explains known faults.	

Sherlock
[de Kleer & Williams, IJCAI 89]

51

Partial Diagnosis	

 {A1=U, A2=U, X2=U}	

Compact Encoding: Partial Diagnoses

Partial Diagnosis: 	

A partial mode assignment M, 	

that “removes all symptoms.”	

•  All full extensions of M are diagnoses.	

?	

?	

A	

B	

C	

D	

E	

1	

1	

1	

0	

1	

F	

G	

X	

Y	

Z	

0	

1	

A3

X1

1	

0	

1	

Extensions (Diagnoses):	

 {A1=U, A2=U, A3=G, X1=G, X2=U}	

 {A1=U, A2=U, A3=G, X1=U, X2=U}	

 {A1=U, A2=U, A3=U, X1=G, X2=U}	

 {A1=U, A2=U, A3=U, X1=U, X2=U}	

	

52

Kernel Diagnosis	

 {A2=U, X2=U}	

Compact Encoding: Kernel Diagnoses

Partial Diagnosis: 	

A partial mode assignment M, 	

that “removes all symptoms”.	

•  All full extensions of M are diagnoses.	

Kernel Diagnosis: 	

A partial diagnosis K, ���
no subset of which is a partial diagnosis.	

?	

?	

?	

A	

B	

C	

D	

E	

1	

1	

1	

0	

1	

F	

G	

X	

Y	

Z	

0	

1	

A1

A3

X1

1	

0	

1	

53

54

Mode Estimation

•  Mode estimates and kernels.
•  By divide and conquer (GDE).
•  Likely estimates and Conflict-directed A*.
•  Mode reconfiguration.
•  Estimating probabilistic (hybrid)

constraint automata.

Conflicts Explain How to
Remove Symptoms

55

A	

B	

C	

D	

E	

1	

1	

1	

0	

F	

G	

X	

Y	

Z	

Symptom: ���
 F is observed 0, but predicted to be 1 if A1, A2 and X1 are okay.	

Conflict 1: 	

{A1=G, A2=G, X1=G} is inconsistent.	

Conflict: 	

An inconsistent partial assignment to mode variables X.	

F	

 0	

1	

1	

0	

→ One of A1, A2 or X1 must be broken.

1	

A1

A2

A3

X1

X2

Symptom	

Second Conflict

56

Symptom: 	

G is observed 1, but predicted 0.	

Conflict 2: 	

{A1=G, A3=G, X1=G, X2=G} is inconsistent.	

Symptom	

1	

1	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

1	

0	

A1

A2

A3

X1

X2

Conflicting modes aren’t always
upstream from symptom.	

→ One of A1, A3, X1 or X2 must be broken.

Kernel Diagnoses =	

Candidate Generation:
Generate Kernels From Conflicts

{A1=U, A2=U, X1=U} 	

 	

diagnoses for Conflict 1.	

{A1=U, A3=U, X1=U, X2=U} 	

diagnoses for Conflict 2.	

“Smallest” sets of modes that remove all conflicts.	

{A1=G, A2=G, X1=G} 	

 	

 	

 	

Conflict 1.	

{A1=G, A3=G, X1=G, X2=G} 	

 	

 	

Conflict 2.	

57

Kernel Diagnoses = 	

{A1=U}	

“Smallest” sets of modes that remove all conflicts.	

{A1=U, A2=U, X1=U} 	

 	

diagnoses for Conflict 1.	

{A1=U, A3=U, X1=U, X2=U} 	

diagnoses for Conflict 2.	

Candidate Generation:
Generate Kernels From Conflicts

{A1=G, A2=G, X1=G} 	

 	

 	

 	

Conflict 1.	

{A1=G, A3=G, X1=G, X2=G} 	

 	

 	

Conflict 2.	

1.  Compute cross product.
2.  Remove supersets.

•  Old subset New.
•  New subset Old.

58

Kernel Diagnoses = 	

{X1=U}���
	

 	

 	

{A2=U, X2=U}���
	

 	

 	

{A2=U, A3=U}���
	

 	

 	

{A1=U}	

“Smallest” sets of modes that remove all conflicts.	

Candidate Generation:
Generate Kernels From Conflicts

{A1=U, A2=U, X1=U} 	

 	

constituents of Conflict 1.	

{A1=U, A3=U, X1=U, X2=U} 	

constituents of Conflict 2.	

{A1=G, A2=G, X1=G} 	

 	

 	

 	

Conflict 1.	

{A1=G, A3=G, X1=G, X2=G} 	

 	

 	

Conflict 2.	

1.  Compute cross product.
2.  Remove supersets.

•  Old subset New.
•  New subset Old.

59

60

Mode Estimation

•  Estimates and kernels.
•  By divide and conquer (GDE).
•  Likely estimates and Conflict-directed A*.
•  Mode reconfiguration.
•  Estimating probabilistic (hybrid)

constraint automata.

 When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth.

- Sherlock Holmes. The Sign of the Four.

Mode Estimation as 	

Conflict-directed Best First Search	

1.  Generate most likely hypothesis.	

2.  Test hypothesis.	

3.  If inconsistent, learn reason for inconsistency ���

(a conflict).	

4.  Use conflicts to leap over similarly infeasible options ���

to next best hypothesis.	

61

Compare Most Likely Hypothesis to Observations

Helium tank	

Fuel tank	

Oxidizer tank	

Main	

Engines	

Flow1 = zero	

Pressure1 = nominal	

Pressure2= nominal	

Acceleration = zero	

It is most likely that all components are okay.	

62

Isolate Conflicting Information

Helium tank	

Fuel tank	

Oxidizer tank	

Main	

Engines	

	

Flow 1= zero	

The red component modes conflict with the model and observations.	

63

Helium tank	

Fuel tank	

Oxidizer tank	

Main	

Engines	

	

Flow 1= zero	

Leap to the Next Most Likely Hypothesis
that Resolves the Conflict

The next hypothesis must remove the conflict. 	

64

New Hypothesis Exposes Additional Conflicts

Pressure1 = nominal	

 Pressure2= nominal	

Acceleration = zero	

Helium tank	

Fuel tank	

Oxidizer tank	

Main	

Engines	

Another conflict, try removing both.	

65

Final Hypothesis Resolves all Conflicts

Helium tank	

Fuel tank	

Oxidizer tank	

Main	

Engines	

Pressure1 = nominal	

Flow1 = zero	

Pressure2= nominal	

Flow2 = positive	

Acceleration = zero	

Implementation: Optimal CSPs and Conflict-directed A*.	

66

67

Reconfiguring Modes using
Conflict-directed A*

Goal: Achieve Thrust

A conflict is a partial assignment to mode variables that
prevents goal achievement (entails the negation of the goal).

arg max Rt(Y)
s.t. Ψ(X,Y) entails G(X,Y)
s.t. Ψ(X,Y) is consistent
Y are reachable modes

68

Mode Estimation

•  Estimates and kernels.
•  By divide and conquer (GDE).
•  Likely estimates and Conflict-directed A*.
•  Mode reconfiguration.
•  Estimating probabilistic (hybrid)

constraint automata.

69

Tracking Mode Changes Over Time

•  PCCA encode an HMM compactly
through concurrency and constraints.

•  Mode estimation abstracts state to modes.
	

Assumes:	

•  Transitions only permitted on modes.

•  Transitions are conditionally independent.
•  For each time t,

all consistent assignments are equally likely.

Standby

Engine Model
Off

Failed
off-
cmd

standby-
cmd

0.01

(thrust = full) AND
(power_in = nominal)

Firing
0.01

standby-
cmd

fire-
cmd

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

On

Camera Model
Off

turnoff-
cmd

turnon-
cmd

(power_in = zero)
AND
(shutter = closed)

(power_in = nominal)
AND
(shutter = open)

0 v

2 kv

2
kv

0 v

0
v

20 v

0.01

0.01

0
v

70

S T

X0 X1 XN-1 XN

• Assigns a value to each variable
(e.g.,3,000 vars).
• Consistent with all state
constraints (e.g., 12,000).

• A set of concurrent transitions, one per
automata (e.g., 80).
• Previous & Next states consistent with
source & target of transitions

Mode Estimation as Belief State
Update for Concurrent PCA	

1.  Infer most likely mode trajectories.
2.  Infer distribution on likely mode assignments.

71

Approximating The Belief State
Best-first Trajectory Enumeration (BFTE):

[Williams and Nayak, AAAI-96][Kurien and Nayak, AAAI-00][Williams et
al., IEEE ’03]

•  Best-first State Enumeration (BFSE):
[Martin, Williams and Ingham, AAAI-05]

–  Improves accuracy through compact encoding.
–  Accuracy improves runtime!

Deep Space One

Earth Observing One

0.4

0.2

0.7

0.3

Monitoring Complex Hardware / Software Systems
through Hierarchical Probabilistic Constraint Automata

Example:
 Rover Image
 Acquisition

Estimating Hybrid States from Noisy Observations

Continuous
state

Discrete
mode

Hybrid probabilistic constraint automata
–  Stochastic transitions between discrete modes

–  Different continuous dynamics for each mode

holding Driving

0.001

0

0.999 1

)(),(
)(),,(

nominal1nominal1

nominalnominal1

tg
ttf

ttt

ttt

ω

υ

+=

+=

++

+

uxy
uxx

)(),(
)(),,(

failed1failed1

failedfailed1

tg
ttf

ttt

ttt

ω

υ

+=

+=

++

+

uxy
uxx

actuator

ok

0

ok

 0

ok

 0

ok

 1

failed
 0

failed
 1

ok

1

ok

 0

ok

 1

failed
 0

failed
 1

t = 0 t = 1 t = 2

failed

 0

failed

 1

…

…

…

…

…

…

…

…

…
),|(~ :1,

)(
2:0,2, tc

i
dcp yxx

µ 2,cx
01.0)|(:1,

)(
2:0, =tc

i
dp yx

1.  Free
2.  Driving
3.  Holding
4.  Backdriven

Kalman Filters Track Subset of Trajectories

[Blackmore, Funiak, Williams AAAAI 05]

Outline

•  Robust, Goal-directed Execution
•  Plan Dispatching
•  Diagnosis and Mode Estimation
•  Plan Generation

Planning

Find:"
"program of actions that achieves the objective."

Based on slides from David Smith, NASA Ames.

Planning

Find:"
"program of actions that achieves the objective."

partially-ordered set of actions." Goals."

typically unconditional."

no loops."

Based on slides from David Smith, NASA Ames.

Paradigms

Classical planning,"
(STRIPS, operator-based, first-principles)"
“generative.”"

Hierarchical Task Network planning,"
“practical” planning."

MDP & POMDP planning,"
planning under uncertainty."

Classical Problem Statement

Operators:"

Goals:" Goal1" Goal2" Goal3"

Op"

pre1"

pre2"

pre3"

eff1"

eff2"

Initial Conditions:" P1" P2" P3" P4"

Propositions:" Pi"

Simple Spacecraft Problem

Observation-1"
target"
instruments"

Observation-2"
Observation-3"
Observation-4"
…"

calibrated"

pointing"

Propositions: Target Pointed To, Camera Calibrated?, Has Image?
Operators: Calibrate, Turn to Y, and Take Image.

Example

Ix"Im"
c"

px"

pC"

Init" Actions"

C" c"

Ty"
¬px"

py"
px"

IA"

Goal"

pC"

Propositions: Target Pointed To, Camera Calibrated?, Has Image?
Operators: Calibrate, Turn to Y, and Take Image.

Based on slides by Dave Smith, NASA Ames"

Planning Domain Description
Language (PDDL)

(:action TakeImage :parameters (?target, ?instr)"
:precondition (and (Status ?instr Calibrated) "

" " (Pointing ?target))"
:effect "(Image ?target)) " ""

"
(:action Calibrate :parameters (?instrument)"

:precondition (and (Status ?instr On) "
" " (Calibration-Target ?target), "
" " (Pointing ?target)"

:effect "(and (not (Status ?inst On)) "
" " (Status ?instr Calibrated)))"

"
(:action Turn :parameters (?target)"

:precondition (and (Pointing ?direction) "
" " ?direction ≠ ?target)"

:effect "(and (not (Pointing ?direction) "
" " (Pointing ?target))) ""

By convention,
parameters start with
“?”, as in ?var.

Based on slides by Dave Smith, NASA Ames"

Planning Paradigms
•  From Goals

–  Goal Regression
–  (SNLP, UCPOP, Burton,

 Europa, Aspen, …)

•  From Initial State.
–  Heuristic Forward Search
–  (FF, HSP, Colin …)

•  By Solving Constraints.
–  Plan Graphs
–  (SatPlan, Blackbox, Kongming …)

IA" F"

pC"

S"

T
A" ¬pC"

C"

Im"
c"

pA"
pC"

Proposition
Init State

Action
Time 1

Proposition
Time 1

Action
Time 2

IA" F"

pC"

S" T
A"

¬pC"

C" Im"
c"

pA"
pC"

Partial order plan

Total order plan

Based on slides by Dave Smith, NASA Ames"

Continuously replanning as a human helps and hinders. 
Planner: heuristic forward search."

Assumptions of Classic Planning

84

•  Atomic time,
•  Agent is omniscient

(no sensing necessary),

•  Agent is sole cause of
change,

•  Actions have deterministic
effects, and

•  No indirect effects.

TakeImage (?target, ?instr):"
Pre: Status(?instr, Calibrated),  
 Pointing(?target)"
Eff: " Image(?target) " ""

"
Calibrate (?instrument):"

Pre: Status(?instr, On),  
 Calibration-Target(?target),  
 Pointing(?target)"
Eff: ¬Status(?inst, On),  
 Status(?instr, Calibrated)"

"
Turn (?target):"

Pre: Pointing(?direction),  
 ?direction ≠ ?target"
Eff: ¬Pointing(?direction),  
 Pointing(?target) ""

Based on slides by Dave Smith, NASA Ames"

The Simple Spacecraft Revisited:
Complications

Observation-1"
priority"
time window"
target"
instruments"
duration"

Observation-2"
Observation-3"
Observation-4"
…" Objective:"

maximize science return."

Based on slides by Dave Smith, NASA Ames"

Observation-1"
priority"
time window"
target"
instruments"
duration"

Observation-2"
Observation-3"
Observation-4"
…"

calibration"
target1"
target2"
…"

consumables:"
fuel"
power"
data storage"
cryogen"

angle between targets"
⇒ turn duration"

Objective:"
maximize science return"

lin
ke

d"
The Simple Spacecraft Revisited:

Complications

Based on slides by Dave Smith, NASA Ames"

More Expressive Planners Include

Time "

Resources"

Utility"

Uncertainty"

Hidden State"

Indirect Control"

Reasoning methods:"

STNs or CSPs,"

LPs or CSPs,"

MDPs or MILPs,"

HMMs or BNs,"

HMMs or OCSPs,"

LPs or RPs."

EUROPA	

Automated 	

Planning System	

Science	

Navigation	

Engineering	

Resource	

Constraints	

DSN/Telcom	

Flight Rules	

Science Team

Sequence
Build

MAPGEN: Automated
Science Planning for MER NASA Ames

Planning Back from Goals:
Partial Order Causal Link Planning

(SNLP, UCPOP, Europa, Aspen, Burton)
1. Select an open condition; "
2. Choose an op that can achieve it:"

Link to an existing instance or"
Add a new instance; "

3. Resolve threats."

IA" F"

Im"
c"

pA"

IA" F"

pC" C"
Im" IA" F"

c"

pA"

C"pC"

Im"
IA" F"

c"

pA"

S"

TA"
¬pC"

C"pC"

Im"
IA" F"

c"

pA"
S"

pC"

IA" F"

pC"

S"

TA"
¬pC"

C"
Im"

c"

pA"
pC"

Helium tank	

Fuel tank	

Oxidizer tank	

Main	

Engines	

1553 bus
C

om
m

and
s

D
ata

PDE

SRU

PDU

GDE

PASM

DSEU

PEPE

BC

Flight
Computer

Flight
Computer

BC

PDE

Burton: Reactive Planning with Indirect Effects

[Williams & Nayak, IJCAI 97]

When causal interactions are acyclic,
 and actions are reversible,

The first action in the plan can be generated in ~ constant time.

Sulu: Goal-directed Control

Command script

00:00 Go to x1,y1
00:20 Go to x2,y2
00:40 Go to x3,y3
…
04:10 Go to xn,yn

Plant

Commands

[Leaute & Williams, AAAI 05]

Sulu: Goal-directed Control

Model-based Executive

Observations Commands

“Explore mapping region for at least
100m, then explore bloom region for at
least 50m, then return to pickup region.
Avoid obstacles at all times.”

Qualitative State Plan

Plant

[Leaute & Williams, AAAI 05]

Optimal

Robust

Sulu: Goal-directed Control

Remain in [safe region]

Explore
[bloom region]

e1 e5

Explore
[mapping region] e2 e3 e4

End in
[pickup region]

[50,70] [40,50]

[0,300]

Obstacle
1

Obstacle 2

Mapping
Region

Bloom
Region Pickup

Region

“Explore bloom region for between 50 and 70
seconds. Afterwards, explore mapping region
for between 40m and 50m. End in the pickup
region. Avoid obstacles at all times. Complete
the mission within 300m.”

Approach: Frame as Model-Predictive Control
using Mixed Logic or Integer / Linear Programming.

Leaute & Williams, AAAI 05

A qualitative state plan is a plan of activities that
specifies desired states rather than executable actions and
provides flexibility in state and time.

94 94

Sulu Depth Navigation for Bathymetric Mapping – Jan. 23rd, 08

Problem: Managing Risk within Mission-Guidelines

Adding Risk Sensitivity

Remain in [safe region]

Explore
[bloom region]

e1 e5

Explore
[mapping region] e2 e3 e4

End in
[pickup region]

[50,70] [40,50]

[0,300]

2. p(End in [goal region] fails OR Remain in [safe region] fails) < 1%.

1. p(Remain in [bloom region] fails OR Remain in [mapping region] fails) < 10%.

Chance constraints:

1. Science Activities

2. Safety Activities

Instance of Chance-constrained Model-based Programming.

P Sulu creates safety margin that satisfies
risk bounds and maximizes expected utility

Start Start

Goal

Safety margin

Walls

Goal
Walls

Safety margin

(a) Uniform width safety margin (b) Uneven width safety margin

(b) results in better path → takes risk when most beneficial

[Ono & Williams, AAAI 08] Problem: How do we find the best safety margin?

Based on slides by Dave Smith, NASA Ames"

Model-based Executives"

1.  Commanded through time evolved goals.
2.  Reasons from commonsense models.
3.  Closes loop on goals.
4.  Model-based programs specify goals and models.

Goals 	

Mode	

Estimation &

Reconfiguraton	

Mission
Manager/

MPC	

Plan	

Dispatcher	

Planner/	

Scheduler	

QUESTIONS?

For More: Go to MIT Open Course Ware:
-  16.410 Principles of Autonomy and Decision Making
-  16.412 Cognitive Robotics

