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The What?
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What is Soil 
Mechanics? 
erdbaumechanik

 
The application of the laws of 
mechanics (physics) to soils as 
engineering materials

Karl von Terzaghi is credited as 
the father of erdbaumechanik
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sands & gravels clays & silts
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The Why?
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Sandcastles what holds them up?
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Palacio de Bellas Artes
Mexico, DF

uniform settlement
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The leaning tower of 
Pisa

differential settlement
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!

Teton dam dam failure
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Niigata earthquake liquefaction
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Katrina
New Orleans

levee failure
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MER: Big Opportunity xTerramechanics
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MER: Big Opportunity xTerramechanics
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The How?
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Topics in classic Soil Mechanics

• Index & gradation

• Soil classification

• Compaction

• Permeability, seepage, and effective stresses

• Consolidation and rate of consolidation

• Strength of soils: sands and clays
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Index & gradation

Definition: soil mass is a collection of particles and 
voids in between (voids can be filled w/ fluids or air)

solid particle

fluid (water)

gas (air)

Each phase 
has volume 
and mass

Mechanical behavior governed by phase interaction
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Index & gradation

Key volumetric ratios

e =
Vv

Vs

void ratio 
[0.4,1] sand

[0.3,1.5] clays

η =
Vv

Vt

porosity
[0,1]

S =
Vw

Vv

saturation
[0,1]

Key mass ratio

w =
Mw

Ms

water content
<1 for most soils

>5 for marine, organic

Key link mass & volume
ρ = M/V

moist, solid, water, dry, etc.

ratios used in practice to 
characterize soils & properties

solid

water+air=voids
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Gradation & classification

sands &
gravels

Grain size is main classification feature

• can see grains
• mechanics~texture
• d>0.05 mm

clays &
silts

• cannot see grains
• mechanics~water
• d<0.05 mm

Soils are currently classified using USCS (Casagrande)
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Fabric in coarsely-grained soils

“loose packing”, high

“dense packing”, low

e

e
relative

ID = emax−e
emax−emin

emax greatest possible, loosest packing
emin lowest possible, densest packing

relative density

strongly affects engineering 
behavior of soils

e =
Vv

Vs
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Typical problem(s)xb 
in Soil Mechanics

• Compact sand fill

• Calculate consolidation of clay

• Calculate rate of consolidation

• Determine strength of sand

• Calculate F.S. on sand (failure?)

• Need: stresses & matl behavior

SAND FILL

PISA CLAY

ROCK (UNDERFORMABLE, IMPERMEABLE)
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Modeling tools
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Theoretical 
framework

• continuum mechanics

• constitutive theory

• computational inelasticity

• nonlinear finite elements
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Theoretical 
framework

• continuum mechanics

• constitutive theory

• computational inelasticity

• nonlinear finite elements

φ
ṗ

Kf
+ ∇ · v = −∇ · q

∇ · σ + γ = 0

balance of mass

balance of momentum
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Theoretical 
framework

• continuum mechanics

• constitutive theory

• computational inelasticity

• nonlinear finite elements

q = k ·∇h

σ̇′
= cep

: ε̇

darcy

hooke

k permeability tensor

c
ep

mechanical stiffness

controls fluid flow

controls deformation
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Theoretical 
framework

• continuum mechanics

• constitutive theory

• computational inelasticity

• nonlinear finite elements
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Pressure node
Displacement node

Theoretical 
framework

• continuum mechanics

• constitutive theory

• computational inelasticity

• nonlinear finite elements
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Finite Element Method (FEM)

• Designed to approximately solve PDE’s

• PDE’s model physical phenomena

• Three types of PDE’s:

• Parabolic: fluid flow

• Hyperbolic: wave eqn

• Elliptic: elastostatics

!!"!#$

%
!
"
!
#$

&

&

' '() '(* '(+ '(, '(- '(. '(/ '(0 '(1 )
'

'()

'(*

'(+

'(,

'(-

'(.

'(/

'(0

'(1

)

'

'()

'(*

'(+

'(,

'(-

'(.

'(/

'(0

'(1

)

Thursday, June 23, 2011



FEM recipe

Strong from

Weak form

Galerkin form

Matrix form
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Multi-D deformation with FEM

Γg

Γh

Ω

∇ · σ + f = 0 in Ω

u = g on Γg

σ · n = h on Γh

equilibrium
e.g., clamp
e.g., confinement

Constitutive relation: 

ugiven get σ

e.g., elasticity, plasticity
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1. Set geometry
2.Discretize domaiin
3. Set matl parameters
4. Set B.C.’s
5. Solve

 

4.417 

B

H

Modeling Ingredients
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2. Discretize domain
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1. Set geometry
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TIME STEP LOOP

ITERATION LOOP

ASSEMBLE FORCE VECTOR

AND STIFFNESS MATRIX

ELEMENT LOOP: N=1, NUMEL

GAUSS INTEGRATION LOOP: L=1, NINT

CALL MATERIAL SUBROUTINE

CONTINUE

CONTINUE

CONTINUE

T = T + !T

FEM Program

constitutive
model
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Material behavior: shear strength

• Void ratio or relative density

• Particle shape & size

• Grain size distribution

• Particle surface roughness

• Water

• Intermediate principal stress

• Overconsolidation or pre-stress

Engineers have developed 
models to account for most 

of these variables

Elasto-plasticity 
framework of choice
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A word on current characterization methods

Direct Shear Triaxial

Pros: cheap, simple, fast, 
good for sands

Cons: drained, forced failure, 
non-homogeneous

Pros: control drainage & stress 
path, principal dir. cnst., 

more homogeneous
Cons: complex
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Material models for 
sands should capture

• Nonlinearity and irrecoverable 
deformations

• Pressure dependence

• Difference tensile and 
compressive strength

• Relative density dependence

• Nonassociative plastic flow
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Material models for 
sands should capture

• Nonlinearity and irrecoverable 
deformations

• Pressure dependence

• Difference tensile and 
compressive strength

• Relative density dependence

• Nonassociative plastic flow
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Loose sand Dense sand

Material models for 
sands should capture

• Nonlinearity and irrecoverable 
deformations

• Pressure dependence

• Difference tensile and 
compressive strength

• Relative density dependence

• Nonassociative plastic flow
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Material models for 
sands should capture

• Nonlinearity and irrecoverable 
deformations

• Pressure dependence

• Difference tensile and 
compressive strength

• Relative density dependence

• Nonassociative plastic flow
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-p’

q

Yield Function

Plastic Potential

Flow vector

Material models for 
sands should capture

• Nonlinearity and irrecoverable 
deformations

• Pressure dependence

• Difference tensile and 
compressive strength

• Relative density dependence

• Nonassociative plastic flow
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Elasto-plasticity in one slide

Hooke’s law σ̇ = cep : �̇

Additive decomposition of strain �̇ = �̇e + �̇p

Convex elastic region F (σ,α) = 0

Non-associative flow �̇p = λ̇g, g := ∂G/∂σ

K-T optimality λ̇F = 0 λ̇H = −∂F/∂α · α̇

Elastoplastic constitutive tangent

cep = ce − 1
χ

ce : g ⊗ f : ce, χ = H − g : ce : f
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Examples
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F = F (σ�, πi)
G = G(σ�, π̄i)
H = H(p�

, πi, ψ)
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Figure 2: Geometric representation of the state parameter ψ.

where the stored energy is an isotropic function of the elastic strain tensor �e. The total stress

tensor σ is decomposed according to Terzaghi’s well known expression for fully saturated soils

i.e., σ = σ�−pδ, where p is the pore fluid pressure and is negative under compression, following

continuum mechanics convention. The tensor δ is the second-order identity.

Let us define three independent invariants for the effective stress tensor σ�,

p� =
1
3

trσ�, q =
�

2
3
�s��, 1√

6
cos 3θ =

tr s�3

χ3
(2.2)

where s� = σ�−p�δ is the deviatoric component of the effective stress tensor, and χ =
√

tr s�2.

The invariant p� is the mean normal effective stress and is assumed to be negative throughout.

Further, θ is the so-called Lode’s angle whose values range from 0 ≤ θ ≤ π/3; it defines an

angle emanating from a tension corner on a deviatoric plane (see Figure 3).

The elastic region in effective stress space is contained by the yield surface which is a

function of the three stress invariants introduced above,

F
�
σ�,πi

�
= F

�
p�, q, θ, πi

�
= ζ (θ) q + p�η

�
p�,πi

�
(2.3)

6

Example of elasto-plastic model
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Figure 3: Three invariant yield surface on (a) deviatoric plane at different values of � and (b)
meridian plane at different values of N .

with

η =






M [1 + ln (πi/p�)] if N = 0

M/N
�
1− (1−N) (p�/πi)N/(1−N)

�
if N > 0.

(2.4)

The function ζ controls the cross-sectional shape of the yield function on a deviatoric plane

as a function of the Lode’s angle. We adopt the shape function proposed by Gudehus and

Argyris [18, 19] because of its mathematical simplicity i.e.,

ζ (θ) =
(1 + �) + (1− �) cos 3θ

2�
(2.5)

where as shown in Figure 3, the ellipticity constant � controls the form of the cross-section

going from perfectly circular � = 1 to convex triangular for � = 7/9. The shape function

with � < 1 reflects a classical feature in geomaterials, which exhibit higher strength in triaxial

compression. Figure 3 also reflects the geometrical interpretation for parameters M and N

which govern the slope of the CSL and the curvature of the yield surface on a meridian plane,

respectively.

Central to the formulation is the additive decomposition of the strain rate tensor into

7
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2.3. CALIBRATIONS AND PREDICTIONS 23

Figure 2.4: Triaxial compression calibrations, (a) and (c), and plane strain compression
predictions, (b) and (d), versus experimental data for loose and dense Brasted Sand
specimens.

model validation: drained txc and ps
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undrained txc loose sands
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true triaxial b=constant
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H − H̄L

Plane-strain liquefaction numerical simulation
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H − H̄L

Plane-strain liquefaction numerical simulation
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(b) Deviatoric Strain

(a) Pore Pressure (in kPa)

ELASTIC

H −HL

Field scale prediction
Levee failure 

(recall Katrina)
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