LRU - a theoretical approach

- The problem: LRU $=f($ PAR, species, .1$)$
- Current approaches to represent LRU above the leaf scale
- The constant value: 1.6 or 1.5 , etc.
- Measured LRU from collocated leaf chambers
- Diagnosed from model output, e.g., SiB3
- LRU \rightarrow constant, when PAR > a certain threshold (say, $1000 \mu \mathrm{~mol} \mathrm{~m}{ }^{-2} \mathrm{~s}^{-1}$). But why do we expect LRU to behave like this?

Deriving an equation for LRU

- Let's see what the LRU function should look like from the basic knowledge of stomatal conductance

The bread and butter:

- Ball-Berry stomatal conductance equation

$$
g_{\mathrm{s}, \mathrm{~W}}=m \frac{A_{\mathrm{n}}}{\chi_{\mathrm{s}, \mathrm{C}}} h_{\mathrm{s}}+b
$$

- Leaf OCS uptake as a function of conductance terms (Stimler et al., 2010; Berry et al., 2013)

$$
\begin{aligned}
F_{S} & =-g_{\mathrm{s}, \mathrm{~S}}\left(\chi_{\mathrm{S}, \mathrm{~S}}-\chi_{\mathrm{i}, \mathrm{~S}}\right)=-g_{\mathrm{m}, \mathrm{~S}}\left(\chi_{\mathrm{i}, \mathrm{~S}}-\chi_{\mathrm{CA}, \mathrm{~S}}\right) \\
& =-\frac{V_{\mathrm{max}, \mathrm{CA}, \mathrm{~S}}}{K_{\mathrm{m}, \mathrm{~S}}} \cdot \chi_{\mathrm{CA}, \mathrm{~S}}
\end{aligned}
$$

After cranking out the math ...

1. Express the OCS uptake F_{S} in terms of stomatal conductance, internal conductance, and ambient OCS concentration
2. Taylor expansion and neglecting higher order terms of $g_{\mathrm{s}, \mathrm{w}} / g_{\mathrm{i}, \mathrm{s}}$, assuming $g_{\mathrm{i}, \mathrm{s}} \gg g_{\mathrm{s}, \mathrm{w}}$
3. Substitute $g_{s, w}$ with the Ball-Berry equation

$$
\begin{gathered}
F_{\mathrm{S}}=F_{\mathrm{s}}\left(A_{\mathrm{n}}, m, \begin{array}{l}
\text { internal conductance, } \mathrm{OCS} / \mathrm{H}_{2} \mathrm{O} \\
\text { diffusivity ratio) }
\end{array}\right.
\end{gathered}
$$

Finally, LRU = ...

$$
\mathrm{LRU}=\frac{m}{R_{\mathrm{W}-\mathrm{S}}^{2}} \cdot h_{\mathrm{S}}\left(-\frac{1}{g_{\mathrm{i}, \mathrm{~S}}} \cdot m \frac{h_{\mathrm{s}}}{\chi_{\mathrm{s}, \mathrm{C}}} A_{\mathrm{n}}+R_{\mathrm{W}-\mathrm{S}}\right)
$$

Furthermore, approximating A_{n} with a typical light response curve, for example,

$$
A_{\mathrm{n}}=\frac{\mathrm{PAR}}{\mathrm{PAR}+K_{\mathrm{PAR}}} P_{\mathrm{m}}-R_{\mathrm{d}}
$$

We get an explicit expression of LRU vs PAR and RH,

$$
\mathrm{LRU}=\frac{m}{R_{\mathrm{W}-\mathrm{S}}^{2}} \cdot h_{\mathrm{s}}\left(R_{\mathrm{W}-\mathrm{S}}+\frac{1}{g_{\mathrm{i}, \mathrm{~S}}} \cdot m \frac{h_{\mathrm{s}}}{\chi_{\mathrm{s}, \mathrm{C}}} R_{\mathrm{d}}-\frac{1}{g_{\mathrm{g}, \mathrm{~S}}} \cdot m \frac{h_{\mathrm{s}}}{\chi_{\mathrm{s}, \mathrm{C}}} \frac{\text { PAR }}{\text { PAR }+K_{\text {PAR }}} P_{\mathrm{m}}\right)
$$

- The LRU equation
- tells us how LRU responds to PAR and RH
- allows us to derive physiological parameters controlling g_{s} and photosynthesis by fitting leaf-level data to the equation
- is useful for extrapolating LRU to the canopy level

- However, the equation does not guarantee LRU to converge to a universal constant value at high light ...
- Our observations at high light: 1.3 in a semi-arid oak woodland, and 1.0 in a freshwater marsh

