From Kuiper Belt to Comet

David Jewitt, UCLA

KISS Comet Workshop - 2017 June 5

From Kuiper Belt to Comet

David Jewitt, UCLA

KISS Comet Workshop - 2017 June 5

Instructions:

1) "...the short course is designed to provide a foundation for everyone to understand your field. Please limit your material to your discipline's "101" level..."

From Kuiper Belt to Comet

David Jewitt, UCLA

KISS Comet Workshop - 2017 June 5

Instructions:

1) "...the short course is designed to provide a foundation for everyone to understand your field. Please limit your material to your discipline's "101" level..."
2) "...please wear solid colors (navy blues, grays, purples, dark creams and browns look good on camera)".

Background

Three sources of comets:

- Kuiper Belt
- Oort Cloud
- Main Belt

The Oort Cloud (comprising many billions of comets)

Oort Cloud cutaway drawing adapted from
Donald K. Yeoman's
illustraton (NASA, JPL)

Active Asteroids/ Main-Belt Comets

Thermal Diffusivity
Heat Content $H=m c_{p} T=\frac{4 \pi}{3} \rho \sigma^{3} c_{p} T$

Loss Rate $\frac{d H}{d t}=4 \pi r^{2} k \frac{d T}{d r} \simeq 4 \pi r^{2} k\left(\frac{T}{r}\right)$
Conduction Time $\tau_{c} \sim \frac{H}{\dot{H}} \sim \frac{\rho r^{3} c_{p} T}{r^{2}(T / r)} \sim\left(\frac{\rho c_{p}}{k}\right) r^{2}$

$$
\text { or } \tau_{c}=\frac{r^{2}}{k}
$$

where $K \equiv \frac{k}{\rho c_{p}}=$ Thermal Diffusivity

$$
[K]=m^{2} s^{-1}
$$

eg: dielectric solids

$$
K \sim \frac{1 W_{m^{-1}} k^{-1}}{10^{3} \mathrm{kgm}^{-3} \cdot 10^{3} \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}} \sim 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1}
$$

eg: dielectric powders $K \sim 10^{-8} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
eg: largest body that can cool in age of solar system is

$$
r \sim \sqrt{K t_{s s}} \sim\left(10^{-8} \cdot 4.5 \times 10^{9} \times 3 \times 10^{7}\right)^{1 / 2} \sim 30 \mathrm{~km}
$$

\rightarrow Most comets have lost primordial heat
eg: Conduction time for 1 km comet

$$
\tau_{c} \sim \frac{10^{6}}{10^{-8}} \sim 10^{14} \mathrm{~s} \sim 10 \mathrm{Myr}
$$

Al^{26} Heating
Heat trapped between t_{f} (time of formation)
$+t_{f}+\tau_{c}$

$$
\begin{aligned}
H=\int_{t_{f}}^{t_{f}+\tau_{c}} Q(t) d t & =\int_{t_{f}}^{t_{f}+\tau_{c}} Q(0) \exp \left(-\frac{t}{\tau_{26}}\right) d t \\
& =Q(0) \tau_{26}\left[\exp \left(\frac{-t_{f}}{\tau_{26}}\right)-\exp \left[-\left(\frac{t_{f}+\tau_{c}}{\tau_{26}}\right)\right]\right]
\end{aligned}
$$

also $\quad H=m c_{p} \Delta T$
So $\Delta T=\frac{3 Q(0) \tau_{26}}{4 \pi \rho r^{3} C_{p}}\left[\exp \left(-\frac{t_{f}}{\tau_{26}}\right)-\exp \left[\frac{-\left(t_{f}+r^{2} / k\right)}{\tau_{26}}\right]\right]$

Measurements suggest $\Delta T \leqslant 30$ or 40 K for $r \sim(\mathrm{~km})$ so $\Delta T=\Delta T\left(r, t_{f}\right)$ constrains t_{f}

Absence of strong heating suggests delayed formation

Models in which KBOS form quickly and/or large (eg: "Asteroids are Born Big" by Morbidelli (2009) must struggle to aroid large ΔT due to Al^{26}.

Rapid formation models (eg: streaming or other instabilities) ignore the volatile nature of comets

Slow accumulation is much more likely, where "slow" means $t_{f} \gg \tau_{26}$

Dynamical Transport Time from $K B \rightarrow J F C$

$$
\tau_{\alpha} \sim 10 \mathrm{Myr}
$$

$$
\begin{aligned}
\tau_{c}(1 \mathrm{~km}) \sim \tau_{d} \rightarrow & \begin{array}{c}
\text { Nucleus is always out of } \\
\text { thermal equilibrium }
\end{array}
\end{aligned}
$$

Dynamical Lifetime of JFCS $\quad \tau_{\text {IFC }} \sim 0.5 \mathrm{Myr}$ $\tau_{c}(1 \mathrm{~km}) \gg \tau_{J F C} \rightarrow J F C_{s}$ strongly out of thermal equilibrium

Actual solution to conduction equation with a cyclic (day/night) illumination is a damped sine wave

Depending on the specific (unknowable, be cause of chaos) orbital history, it is entirely possible to fund Kueper belt temperatures (40 K) in hot JFC nuclei $\geqslant 1 \mathrm{~km}$

Sublimation Energy Balance

$$
\begin{aligned}
& \text { geometric term (} 1 \leq x \leq 4 \text {) }
\end{aligned}
$$

for $r_{H} \leqslant 1 A U$; sublimation dominates, then

$$
@ r_{H}=\left\lvert\, A U \quad\left[\begin{array}{l}
\dot{m} \sim \frac{f_{0}(1-A) \cos \theta}{x L(T) r_{H}^{2}} \\
\end{array}\right.\right.
$$

Surface Recession Rate $\left.\quad \frac{d r}{d t} \sim \frac{\dot{m}}{\rho}\left(\mathrm{kgm}^{-2-1}\right)\left(\mathrm{kgm}^{-3}\right)\right) ~ \frac{5 \times 10^{-4}}{5 \times 10^{2}} \sim 10^{-6} \mathrm{~ms}^{-1}$
$\left[\begin{array}{cl}\text { C.f. my daughter } & d l / d t \sim 10^{-8} \mathrm{~ms}^{-1} \\ a \text { tree } & d l / d t \sim 10^{-8} \mathrm{~ms}^{-1}\end{array}\right]$
Timescale to free-sublemate nucleus

$$
\tau_{3} \sim \frac{r}{d r / d t} \sim \frac{10^{3}}{10^{-6} \mathrm{~ms}^{-1}} \sim 10^{9} \mathrm{~s}(30 \mathrm{gr})
$$

Actual time is longer because
a) $r_{H}>1$ All $(e>0)$
b) mantle forms

Still, physical lifetime is smaller than dynamical lifetime: $\tau_{S} \ll \tau_{J F C}$

Questions

- JFCs are from the Kuiper belt but, from where in the Kuiper belt (resonances vs. scattered KBOs vs. other)?
- Where and when were the JFCs formed?
- What is relation between volatiles in main-belt comets and Jupiter-family comets?
- What limits the physical lifetimes of comets? Loss of volatiles? Physical decay (breakup)?

Amorphous Ice

$\Delta \mathrm{E} \sim 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$

 $\rightarrow 2 \times 2,4,2$

The Centaurs

Sample Active Centaurs - Keck and UH 88

TOTAL TRAPPED GAS

Bar-Nun et al. 1988

TOTAL TRAPPED GAS

Questions

- Is amorphous abundant in comets?
- If so, how deep?
- Does amorphous ice drive cometary activity?
- If comets are amorphous then so must be the Centaurs
- If Centaurs are amorphous, then so must be the Kuiper Belt Objects
- If so, why do their spectra show crystalline ice?

Questions?

