



## Solar Sails for CubeSats

# Keck Institute for Space Studies (KISS) Workshop 2012 July 11 California Institute of Technology

Extracted from material by: Robert L. Staehle, Diana Blaney, Hamid Hemmati, Dayton Jones, Andrew Klesh, Joseph Lazio, Paulett Liewer, Martin Wen-Yu Lo, Pantazis Mouroulis, Neil Murphy, Paula J. Pingree, Thor Wilson, Chen-Wan Yen Jet Propulsion Laboratory, California Institute of Technology

Jordi Puig-Suari, Austin Williams
<a href="California Polytechnic University">California Polytechnic University</a>, San Luis Obispo

Bruce Betts, Louis Friedman The Planetary Society

Tomas Svitek
Stellar Exploration

Brian Anderson, Channing Chow University of Southern California

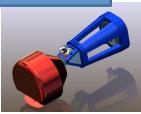
Preliminary progress report:

The NASA Innovative Advanced Concepts (NIAC) task on which this reports is still in progress. No mission described herein has been approved or funded.

#### **Six Technology Challenges**






1. Interplanetary environment

Getting to cubesats Interplanetary



6. Maximizing downlink info content

#### 5.Instruments



#### <u>Taxonomy</u>

- Launch off C<sub>3</sub>>0 ~ballistic traj
- Depart from "Mothership", 10s to 100s m/sec
  - Companion
  - Orbiter
  - Lander
  - Impactor
- Self-propelled
  - $1 10 \, km/sec/yr$
  - Electric
  - Solar Sail



2. Telecommunications

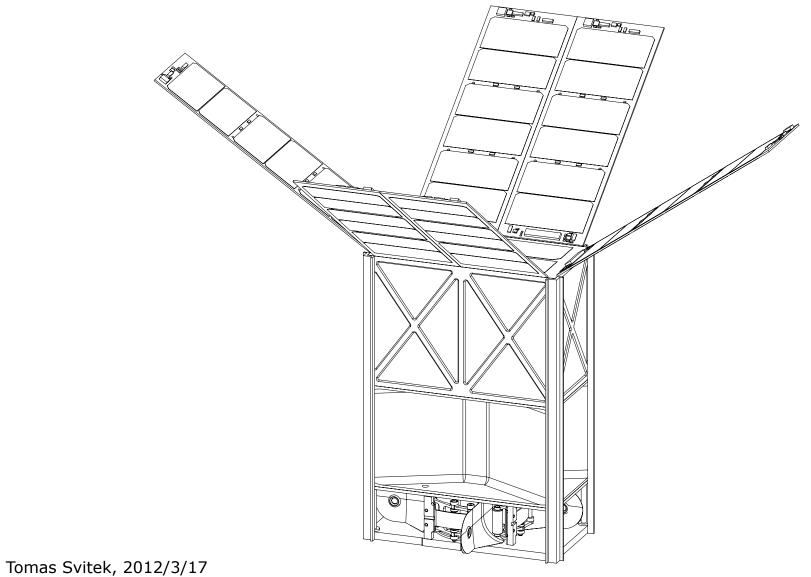


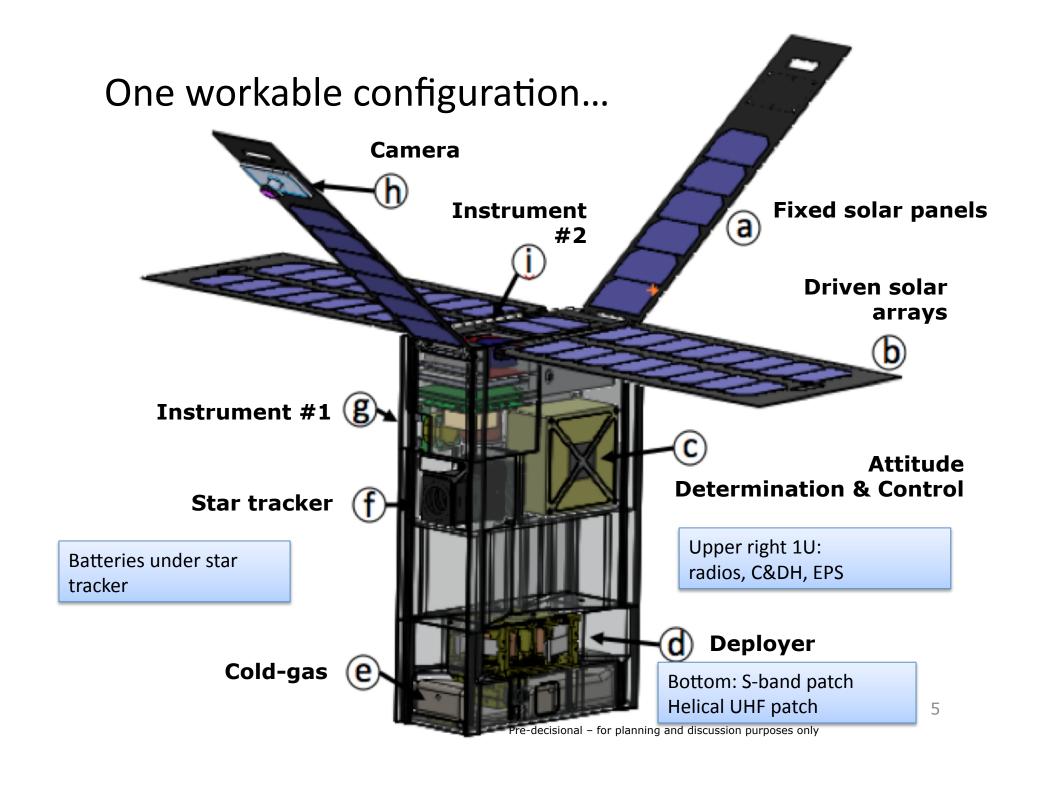
3. Propulsion (where needed)

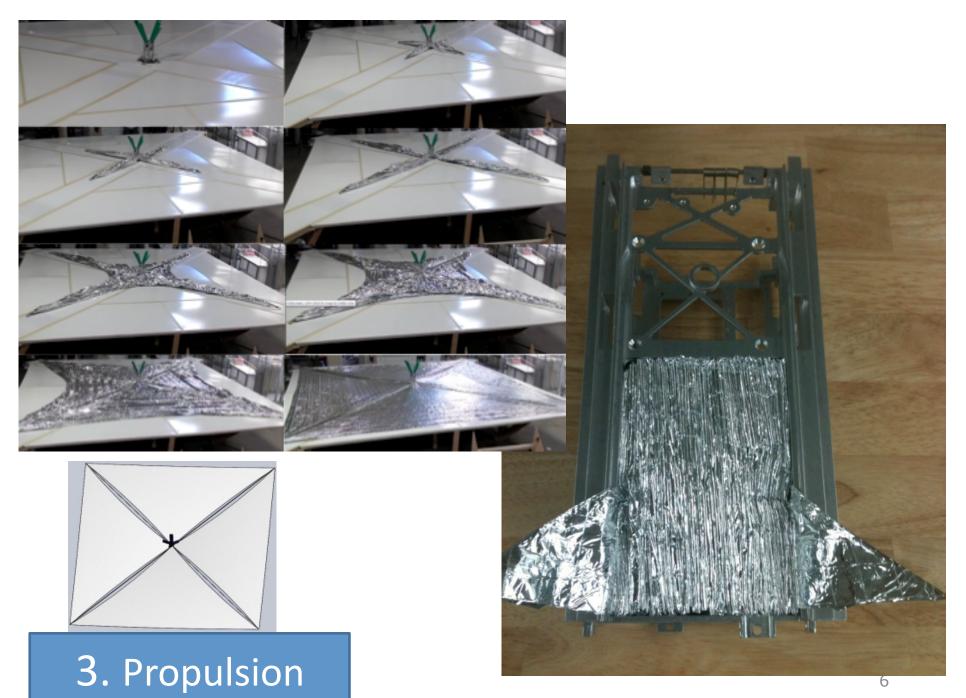


4. Navigation

A Workable Interplanetary CubeSat System Architecture emerges from the maturation of


six key technologies





**LightSail** 1<sup>tm</sup>: Planetary Society, Stellar Exploration, CalPoly-SLO

RAX-2: University of Michigan

## One Preliminary Configuration







### Solar Sail Possibilities

Current technology

1 μg @1 AU → theoretical ~300 m/sec/yr

- Ikaros (2010: 1 μg), LightSail<sup>[tm]</sup> 1 (2013?: 6 μg),
- Electrochromic surfaces for 2-axis control
- Switch to Kapton<sup>[tm]</sup> from Mylar<sup>[tm]</sup> would yield multi-year life
- Next 5-10 year projection (2021: 20 μg)
  - Tip vanes configured to provide 3-axis electrochromic control without moving parts.
  - Material thickness decrease 2-3X to enable larger sail packed into limited CubeSat volume.
  - Advanced (more expensive) material booms to enable longer boom to handle larger sail for same boom mass & volume.
- Next 10-20 years (2026: <100 μg?)
  - Even thinner materials, sublimating substrate, more advanced booms.
  - High temp materials to allow close solar approach, high  $\Delta V$  in short time.
    - (a 91 µg (at 1 AU) sail starting from 0.3 AU reaches 100 AU in 17 yrs; 0.2 AU → 13 yrs)
  - Most spacecraft functions printed on inner part of sail.\*
- \* As discussed at Kendra Short/JPL 2012/3/19 NIAC Printable Spacecraft Workshop

5/31/20

## In principle, you can build a sail...

- For propulsion, or as an antenna, or both.
- That is maneuverable in position and attitude.
- Up to ~10 m on a side square, or most any axisymmetric shape, to fit into ~2 U of a CubeSat, or larger on a bigger satellite.
- With low to moderate geometric accuracy (centimeters to millimeters)
- Having conducting and non-conducting portions at scales from <1 mm to meters, with whatever connectivity you can draw on two sides of an insulating sheet.
- With conducting (easy) or non-conducting (harder) structural spars.
- 3-axis stabilized or spinning.

# If you don't want a sail, you can...

- Build a tether/antenna to kilometers in length.
- Use crossed tethers and spin.
- Add structure for 3<sup>rd</sup> dimension (e.g., inflatables, deployable booms)
- Use more of you imagination...