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We study the effects of substructure on the rate of dark-matter annihilation in the Galactic halo. We use

an analytic model for substructure that can extend numerical simulation results to scales too small to be

resolved by the simulations. We first calibrate the analytic model to numerical simulations, and then

determine the annihilation boost factor, for standard weakly interacting massive particle (WIMP) models

as well as those with Sommerfeld (or other) enhancements, as a function of galactocentric radius in the

Milky Way. We provide an estimate of the dependence of the gamma-ray intensity of WIMP annihilation

as a function of angular distance from the Galactic center. This methodology, coupled with future

numerical simulation results can be a powerful tool that can be used to constrain WIMP properties using

Fermi all-sky data.
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I. INTRODUCTION

Weakly interacting massive particles (WIMPs) provide
perhaps the most promising class of dark-matter candi-
dates. These are particles that arise in theories of new
electroweak-scale physics, such as low-energy supersym-
metry [1] or models with universal extra dimensions [2].
Experiments that seek to directly detect these particles in
low-background experiments, or to indirectly detect them
through observation of energetic neutrinos from WIMP
annihilation in the Sun, are now beginning to dig into the
favored WIMP parameter space. However, there are also
prospects for indirectly detecting WIMPs through obser-
vation of gamma rays and/or cosmic-ray positrons, anti-
protons, or antideuterons from WIMP annihilation in the
Galactic halo. These annihilation products have received
considerable attention in the recent literature with the
attribution of some reported (and still controversial)
cosmic-ray anomalies [3] to WIMP-annihilation products.

The total rate at which WIMPs annihilate in the Galactic
halo is proportional to the volume integral of the square of
the dark-matter density. In the canonical (and simplest)
model, the dark matter is smoothly distributed in the halo
in a spherically symmetric way with a dark-matter density
�ðrÞ that is a monotonically decreasing function of r; for
example, it is often modeled as an isothermal or a Navarro-
Frenk-White (NFW) profile [4].

However, analytic arguments and numerical simulations
show that there should be substructure in the dark-matter
distribution in the Galactic halo [5–7]. The dark matter
may be clumped; some of it may be bound in higher-
density self-bound subhalos; and some may be in tidal

streams [8]. This is an outcome of hierarchical clustering,
in which small dense halos form first and then merge to
form progressively larger structures. If dark matter in the
halo is clumped, then the total annihilation rate will be
enhanced by some boost factor [9], the increased rate per
unit volume in dense regions outweighing the decreased
rate per unit volume in lower-density regions.
In the canonical WIMP scenario, the substructure may

have a roughly scale-invariant distribution in substructure
mass/size extending all the way down to substructures on
mass scales �10�10M� [7,10,11], roughly 22 orders of
magnitude smaller than the �1012M� Milky Way halo.
While state-of-the-art numerical calculations now have the
resolution to simulate several decades in this hierarchy,
they are very far from being able to follow the survival and
evolution of the smallest substructures through all of the
generations in the structure-formation hierarchy that result
in a Milky Way halo. Analytic calculations of these sur-
vival probabilities are difficult [12,13].
However, given that the smallest subhalos are likely to

be the densest, the boost factor may depend significantly
on the existence of these substructures. This is particularly
true in models with a Sommerfeld enhancement in the
annihilation rate [14]—those where the annihilation rate
increases with lower WIMP velocities—since the smallest
subhalos are also likely to have the smallest velocity
dispersion.
In a previous paper [15], we presented an analytic model

to describe the self-similar substructure expected from
hierarchical clustering. The model predicted a high-density
power-law tail for the probability for a given point in the
halo to be in a clump of density �. Subsequent to that
paper, another appeared [16] that presented N-body simu-
lations that showed this power-law tail. After calibration to
numerical simulations, the model can be used to extrapo-
late the results of numerical simulations to substructure-
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mass scales far smaller than those currently accessible to
the simulations. We investigated in Ref. [15] the depen-
dence of the boost factor assuming a canonical WIMP-
annihilation rate (i.e., no Sommerfeld enhancement). A
complementary analytical approach to this problem, based
on the stable clustering hypothesis, was recently presented
by [17].

In this paper we revisit and extend those calculations.
We first describe in Sec. II the analytic model. We extend
the model by including a finite width for the smoothly
distributed component of dark matter in addition to the
high-density power-law tail. We then use in Sec. III state-
of-the-art N-body simulations to measure the width of the
smooth component and the amplitude of the power-law tail
and thus calibrate the analytic model to current simula-
tions. We moreover determine how the substructure distri-
bution varies with galactocentric radius in the halo. In
Sec. IV we use the calibrated model to determine the boost
factors for canonical WIMPs and for WIMPs with a
Sommerfeld enhancement to the annihilation rate.
Section V reviews the substructure-model parameters ex-
pected from WIMP models, and Sec. VI determines the
angular dependence of the intensity of gamma-ray radia-
tion both with and without the substructure boost factor we
obtain. Section VII reviews the model and results and then
provides some comments, caveats, and directions for future
development of the model.

II. SUBSTRUCTURE MODEL

Before discussing our analytic model for substructure
we begin by presenting the canonical smooth-halo model
against which the substructure model will be compared.
We take as the canonical model for the Galactic halo an
NFW profile,

��ðrÞ ¼ 4�s

ðr=rsÞð1þ r=rsÞ2
; (1)

as a function of galactocentric radius r, with parameters
�s ¼ 0:051 GeV cm�3 and rs ¼ 21:7 kpc taken to provide
a reasonable fit to the Milky Way rotation curve.

If dark matter in the halo is clumped, then the densities
at all points with the same r will not necessarily be the
same. Instead, there will be some probability distribution
function Pð�; rÞ defined so that Pð�; rÞd� is the probability
that a particular point in the Galactic halo (at some fixed
galactocentric radius r) has a density between � and �þ
d�. According to the arguments of Ref. [15], a fraction fs
of the volume of the halo (in fact most of the volume; fs ’
1, as we will see) should be filled with a smooth dark-
matter component with density �h, and a fraction 1�
fs � 1 will consist of a high-density clumped component,
with something like a power-law distribution of densities.
Thus, the probability distribution function that we use is

Pð�; rÞ ¼ fsffiffiffiffiffiffiffiffiffiffiffiffi
2��2
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where �ðxÞ is the Heaviside step function. Here, the first
term describes the smooth host halo component as having a
Gaussian distribution in ln� with mean density �h and a
Gaussian width in ln� of �. This distribution peaks at a

density �0 ¼ e�3�2=2�h, a density slightly below �h.
The second term in Eq. (2) is the high-density power-law

tail due to substructures that remain from earlier genera-
tions in the structure-formation hierarchy. The parameter
�h in Eq. (2) is in fact a function of r; we will see below
that �hðrÞ ’ �� to very good accuracy. There may also be
further r dependence in Pð�; rÞ through an r dependence of
the parameters �, �, and fs. As we will see, our simula-
tions are not yet good enough to allow the r dependence of
� to be resolved, and so we take it to be a constant. The
simulations are, however, sufficiently resolved to see a
strong dependence of fsðrÞ on r, which we detail below.
The distribution Pð�; rÞ in Eq. (2) is normalized so thatR1

0 Pð�; rÞd� ¼ 1. It can be integrated to give the mean

density,

��ðrÞ ¼
Z �max

0
�Pð�Þd�

¼ fs�h þ ð1� fsÞ�h

� 1þ�
� ½1� ð�max

�h
Þ���; � � 0

ð1� fsÞ�h ln
�max

�h
; � ¼ 0:

(3)

This thus provides a relation between the mean density
�hðrÞ of the smooth component and the canonical host halo
density ��. Strictly speaking, this relation requires the
maximum density �max out to which the power-law tail
extends. However, wewill see that numerically 1� fs is so
small that �hðrÞ ’ ��ðrÞ is a very good approximation for
practical purposes.

III. CALIBRATION TO SIMULATIONS

We make use of the Milky Way–like halo in the Via
Lactea II simulation [18] and calibrate our model to the
Pð�; rÞ measured from the simulated particle distribution.
Figure 1 shows the PDF Pð�Þ derived from Via Lactea II
for three galactocentric radii, at 10 kpc (lowest solid line,
red), at 100 kpc (middle solid line, blue), and at 300 kpc
(highest solid line, cyan). To obtain this Pð�Þ, we consider
an ellipsoidal shell that follows an isodensity contour in the
halo. For each particle in that shell, we calculate �i ¼ �= ��
where � is estimated in the usual manner from the nearest
N neighbors using a symmetric smoothed particle hydro-
dynamics kernel and the median density �� is obtained from
all the particles in that ellipsoidal shell. These �i are then
binned in equally spaced bins in log10ð�Þ. In each of these
bins, we calculate Pðlog10�Þ ¼

P
i�

�1
i where the sum is
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over all particles in that bin; the ��1
i weighting gives a

volume-fraction distribution. The distribution in log10� is
then converted to a distribution in � and normalized.

A. Power-law tail

The central features of Fig. 1 relevant here are the high-
density power-law tails predicted by Ref. [15] (and seen
already in simulations [16]). The figure shows that the
amplitude of the high-density power-law tail is larger at
larger radii. This can be attributed largely to the fact that
the mean density �� is�175 times lower at 100 kpc than at
10 kpc, and another factor�30 times lower at 300 kpc, and
so the ratio of the density in substructures to the mean
density is higher at larger radii.

We now use this simulation to calibrate the analytic
model at a variety of radii r, from 4 to 300 kpc. At each
radius we fit for the power-law parameters � and fs. We
find that at radii greater than �20 kpc, the smooth-halo
fraction is well approximated by

1� fsðrÞ ¼ 7� 10�3

�
��ðrÞ

��ðr ¼ 100 kpcÞ
��0:26

: (4)

Note that at radii less than�20 kpc, 1� fsðrÞ drops faster
than Eq. (4); for example, 1� fsð10 kpcÞ ¼ 4� 10�4 �
1:5� 10�3ð ��ð10 kpcÞ= ��ð100 kpcÞÞ�0:26. This close to the
center, however, the clumpiness of the simulated halo is

likely artificially suppressed due to finite resolution effects.
The best-fit values of � are 0:0� 0:1 at all radii greater
than 20 kpc. In the following, we implicitly assume � ¼ 0
and the radial dependence in fs given by Eq. (4).

B. Finite width of the smooth component

The simulation results shown in Fig. 1 show a finite
width � for the smooth component. However, care must
be taken as Poisson fluctuations due to the finite number N
of nearest neighbors in the density estimator will also
contribute to the width. In Fig. 2 we show Pð�Þ at
100 kpc for densities determined with N ¼ 16, 32, 64,
128, and 1024. The dotted curves indicate the expected
contribution to the width from Poisson fluctuations (and
note that the true and Poisson widths should add in quad-
rature), which we obtained by running the density estima-
tor on a randomly distributed sample of 106 particles. AsN
is increased, the width of the smooth component decreases,
but not quite as fast as the Poisson fluctuations, and byN ¼
1024 it is clear that the true width has been resolved to be
about � ’ 0:2. At 10 kpc (not shown here) it remains
unresolved, and we conclude only that � & 0:2 at radii
less than 100 kpc.

IV. ANNIHILATION BOOST FACTOR

We now consider the boost of the annihilation rate in a
halo with substructure relative to the rate in the canonical
smooth-halo model.
The annihilation rate (per unit volume) at any point in

the Galactic halo is

� ¼ h�vi �2

2m2
�

; (5)

FIG. 2 (color online). The probability distribution function
Pð�Þ at 100 kpc for particle densities estimated from the nearest
N ¼ ð16; 32; 64; 128; 1024Þ neighbors.

FIG. 1 (color online). The probability distribution function
Pð�Þ obtained from simulations. The solid curves are the simu-
lation results at r ¼ 300; 100, and 10 kpc (from top to bottom).
The dashed curves show our analytic approximations to the
power-law tail. The dotted curve indicates the contribution to
the finite width of the smooth component at 10 kpc from Poisson
fluctuations due to the use of N ¼ 32 neighbors in the density
estimator. Note that the mean host halo density �h to which the x
axis is normalized is �175� (� 4900� ) smaller for the 100-
kpc (300-kpc) curve than in the 10-kpc curve.
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where h�vi is the annihilation cross section (times relative
velocity v, averaged over the velocity distribution of the
halo), and m� is the WIMP mass; i.e., h�vi ¼R1
0 dvfðvÞ�v, where fðvÞ [normalized to

R1
0 fðvÞdv ¼

1] is the WIMP pairwise velocity distribution at that point
in the Galactic halo. For the canonical WIMP, �v is
approximately velocity independent at Galactic-halo ve-
locities, and so h�vi ¼ ð�vÞ, a constant. If �v depends on
velocity, then h�vi may vary from one point in the halo to
another due to the possible variation of fðvÞ with position
in the halo.

A. Standard velocity dependence

Let us first consider the canonical WIMP where the
cross-section factor h�vi is velocity independent. In this
case, the change in the velocity dispersion that may ac-
company clumping is irrelevant. The total annihilation rate
in some volume V is then proportional to a volume integral
of the density squared—i.e., / R

�2dV. The annihilation

rate for a fixed total mass of dark-matter enclosed within a
given volume will thus be enhanced by a ‘‘boost-factor’’ if
the matter is not uniformly distributed within that volume.
For the canonical WIMP, this boost factor BðrÞ is the ratio

BðrÞ ¼
R
�2dVR½ ��ðrÞ�2dV ¼

Z �max

0
Pð�; rÞ �2

½ ��ðrÞ�2 d�; (6)

where the second equality follows since Pð�; rÞ ¼
ð1=VÞðdV=d�Þ (with V the volume in the halo). The quan-
tity �max is the maximum density. We take that to be
�80 GeV cm�3, which is about 5 times the mean virial
density of the rare first collapsed structures in the Universe
(178 times the mean density of the Universe at z � 40); we
will say more later about �max.

In the standard WIMP model, where h�vi ¼ constant,
the boost factor BðrÞ is given by (noting that �� ’ �h)

BðrÞ ¼ fse
�2 þ ð1� fsÞ 1þ �

1� �

��
�max

�h

�
1�� � 1

�
: (7)

There is r dependence in this boost factor via Eq. (4) in fs,
via Eq. (1) in �h � ��, and in principle also in �, although
it turns out to be negligible.

There are two contributions to this boost factor: The first
comes from the finite width � of the smooth component—

i.e., Bs ¼ fse
�2
—and it depends very strongly on�. Given

that we find � & 0:2 in our simulations, we infer that the
boost factor due to the finite width of the smooth compo-
nent is no more than a few percent.

We now turn to the second term, that due to substructure,
the central focus of this work. Given that �max 	 �� in the
Milky Way halo, the boost factor would be essentially
independent of �max if � were �> 1. However, we find
in the simulations that �< 1 in a Milky Way–like halo, in
which case the boost-factor results for the canonical WIMP
do indeed depend on �max. The fact that the integral in

Eq. (6) is dominated by the high-density end implies that
the boost factor due to clumping is determined primarily by
the early-collapsing highest-density (and lowest-mass)
substructures.
What is an appropriate value for �max? A first guess

might be the virial density of the earliest-collapsing halos,
�vir ¼ 178�critðzcÞ ’ 16 GeV cm�3 ðzc=40Þ3 (for a col-
lapse redshift zc 	 0). However, depending on its density
profile, most of a halo’s volume might have considerably
higher densities. In Fig. 3 we show the density probability
distribution Pð�Þ 
 1=VdV=d� for an isolated NFW halo.
At low densities, in the outskirts of the halo where �� r�3,
the density probability falls as ��2, matching the power-
law tail of the local density probability function [Eq. (2)].
In the innermost regions of the halo, where �� r�1, we
have Pð�Þ � ��4. The transition between these two re-
gimes occurs at �s ¼ 1=12c3=fðcÞ�vir, where c ¼
Rvir=rs is the concentration of the halo and fðcÞ ¼ lnð1þ
cÞ � c=ð1þ cÞ. We set �max ¼ �s ¼ 1=12c3=fðcÞ�vir,
which then depends only on the concentration with which
the earliest-collapsing halos are born. Numerical simula-
tions [7] indicate low natal concentrations of c � 2–5,
corresponding to �max � 1:5–11�vir. For definiteness, we
pick an intermediate value of c ¼ 3:5 and zc ¼ 40, giving
�max ¼ 80 GeV cm�3.
Close to the center, the clumped fraction 1� fs, as

determined from the numerical simulation, is so small
that the boost factor remains close to unity. As the mean
halo density �h decreases with radius while the clumped
fraction increases [cf. Eq. (4)], the local boost factor grows
considerably in the outer regions of the halo. Note, how-

FIG. 3. The density probability distribution function Pð�Þ for
an isolated NFW halo with concentration c ¼ 10, truncated at
rvir. The Pð�Þ � ��2 behavior continues beyond �vir (vertical
dashed line) to ��ðrsÞ ¼ 1=12c3=fðcÞ�vir.
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ever, that the total luminosity of the halo does not increase
in proportion to this local boost factor. The overall lumi-
nosity is dominated by radii & rs, and the total boost from
substructure within a radius R must be evaluated numeri-
cally,

Bð<RÞ ¼
R
R
0 BðrÞ�ðrÞ2r2drR

R
0 �ðrÞ2r2dr

: (8)

We show in Fig. 4 the differential and cumulative lumi-
nosity boost factor as a function of radius for the Via
Lactea II host halo, assuming� ¼ 0 and 1� fsðrÞ as given
in Eq. (4). The boost factor remains close to unity in the
center and only reaches 1.5 at the Sun’s distance of 8 kpc,1

implying that if the WIMP-annihilation cross section has
the canonical h�vi / constant dependence on the velocity,
the local boost from substructure is unlikely to provide the
missing factor of 100–1000 needed to explain the cosmic-
ray anomalies (see also [19]). The total luminosity of the
halo, however, can be appreciably boosted by substructure.
The cumulative boost Bð<rÞ increases to �17 at the virial
radius.

Before proceeding further, we note that if � ¼ 0 (and
�max 	 ��), then the boost factor is BðrÞ ¼ fs þ ð1�
fsÞð�max= ��Þ, an expression that is easily understood. The
first term is simply the usual annihilation rate due to the
smoothly distributed dark matter. The second is that due to
clumping. If the integrand in Eq. (6) is dominated by the
high-density end, it implies that most of the annihilation in
the clumped component is taking place in the smallest and
densest subhalos. If so, then the annihilation rate, per unit
volume, from substructure should be proportional simply
to the spatial density of the subhalos (i.e., how many there
are per unit volume), which itself should be proportional to
the ratio of subhalo to host halo density (�max= ��); this is
consistent with Eq. (7) if � ¼ 0.

B. Sommerfeld enhancement

Suppose now that the annihilation cross section is such
that the thermally averaged cross section is �v / �v��,
where �v is the rms relative velocity for annihilating
WIMPs. There will then be an additional enhancement in
the annihilation rate since lower-mass subhalos will have
smaller velocity dispersions. We account for this additional
effect as follows: We first recall that the characteristic
density of a first-generation halo collapsing at z ¼ 40
with a concentration of c ¼ 3:5 is �s ¼ 80 GeV cm�3,

and that the corresponding characteristic velocity is vs 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMð<rsÞ=rs

p ’ 1:0� 10�3 km sec�1. We then note that
a typical Milky Way host halo of mass 2� 1012M� and
concentration c ¼ 15 at z ¼ 0 has a corresponding char-

acteristic density and velocity of �s ¼ 0:076 GeV cm�3

and vs ¼ 200 km sec�1. This thus suggests a rough scaling
v / ��1:75. We emphasize that this scaling is only meant to
very roughly capture the relation between density and
relative velocity of the dark-matter particles. In reality
there likely is no such simple one-to-one relationship
between these two quantities, since regions with similar
densities can be bound to subhalos of very different masses
and hence have very different velocity dispersions.
However, as will become clear below, our results are not
very sensitive to the exact value of the power-law expo-
nent, as long as regions of higher density (at a fixed
galactocentric distance) typically have lower velocity
dispersions.
In the following, we consider only the Sommerfeld-

enhanced boost factor from the clumped component and
disregard the small contribution from the finite width of the
smooth component. We further assume that the dark-matter
velocity dispersion �vMW ’ 220 km sec�1 in the Galactic
halo does not vary with galactocentric radius r. Strictly
speaking, this constancy does not hold for a self-
gravitating NFW distribution. Realistically, though, the
Milky Way disk contributes very significantly to the po-
tential in the inner Galaxy, and so the dark-matter spatial/
velocity distribution in the inner Galaxy cannot be a pure
self-gravitating NFW distribution. Our assumption of a
constant dark-matter velocity dispersion is probably closer
to the truth than the radial change in the velocity dispersion
implied by an NFW distribution.
With these approximations and assumptions, the boost

factor is

FIG. 4 (color online). The local substructure boost BðrÞ (solid
line) and the cumulative luminosity boost Bð<rÞ (dotted line), as
a function of radius.

1It would be only 1.14 using the value of 1� fs measured at
10 kpc, instead of Eq. (4).
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BðrÞ ¼ fs þ ð1� fsÞð1þ �Þ
Z �max

��

d�

��

�
�

��

���
�
vMW

vð�Þ
�
�
;

(9)

which we then integrate with the relation vð�Þ ¼
v0ð�=�maxÞ�1:75 to find

BðrÞ ¼ fs þ ð1� fsÞ 1þ �

1þ 1:75�� �

�
vMW

v0

�
�

�
��

�max

��

�
1�� �

�
�max

��

��1:75�
�
: (10)

Again, for the values of � we see in the simulation, the
integrand in Eq. (9) is dominated by the high end, increas-
ingly so for �> 0. Now, even though 1� fs may be small
(the clumped fraction is small), the velocity enhancement
ðvMW=v0Þ� may be large, even for values � ’ 1. Again, if
the integrand is dominated by the high-density tail, it
implies that most of the annihilation in the clumped frac-
tion is occurring in the lowest-mass highest-density re-
gions. And if so, then the annihilation rate per unit
volume should again be proportional simply to the ratio
of subhalo to host halo density (�max= ��), which is again
implied in Eq. (10) if � ¼ 0.

If the mass of the force carrier particle mediating the
annihilation is nonzero, the Sommerfeld effect saturates at
a finite velocity vsat, when the de Broglie wavelength of the
particle becomes longer than the range of interaction. With
such a saturation the integral in Eq. (9) is split into two

parts: one from �� to �sat ¼ �maxðv0=vsatÞ1=1:75 with a
velocity-dependent Sommerfeld enhancement term
ðvMW=vð�ÞÞ�, and a second part from �sat to �max with a

constant enhancement factor of ðvMW=vsatÞ�,

BðrÞ ¼ fs þ ð1� fsÞð1þ �Þ
�
vMW

vsat

�
�
�

1

1þ 1:75�� �

�
��
�sat

��

�
1�� �

�
�sat

��

��1:75�
�

þ 1

1� �

��
�max

��

�
1�� �

�
�sat

��

�
1��

��
: (11)

FIG. 5 (color online). The boost factor at the solar radius as a
function of the parameter �, for no saturation (solid line), vsat ¼
10�4c (dotted line), and vsat ¼ 10�5c (dashed line). The
Sommerfeld-like enhancement grows as v�� until vsat.

FIG. 6 (color online). The cumulative boost factor as a func-
tion of distance from the Galactic center. In both panels the solid
curve represents the canonical case (� ¼ 0). Top panel: Bð<rÞ
for different values of � with no velocity saturation: � ¼ 0:1,
0.3, 0.5, 0.7, and 1.0 from bottom to top. Bottom panel: Bð<rÞ
for � ¼ 1:0 and different values of the saturation velocity:
vsat=c ¼ 10�4, 10�5, 10�6, 10�7, and 0 from bottom to top.
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Figure 5 shows the boost factor at the solar radius as a
function of the velocity parameter �. The solid line depicts
the case without saturation, and the dotted and dashed lines
with vsat=c ¼ 10�4 and 10�5, respectively. We use �max ¼
80 GeV cm�3 and v0 ¼ 1:0� 10�3 km sec�1 here. With
Sommerfeld enhancement it is possible to get very large
substructure boost factors even at the solar radius. This
substructure boost, of course, applies in addition to the
Sommerfeld enhancement of the smooth-halo annihilation
luminosity.

Figure 6 shows the cumulative boost factor Bð<rÞ as a
function of radius. In the top panel we plot curves for � ¼
0, 0.1, 0.3, 0.5, 0.7, and 1.0, assuming no saturation. In the
bottom panel we fix� ¼ 1 (except for the reference � ¼ 0
case) and vary the saturation velocity, vsat=c ¼ 10�4,
10�5, 10�6, 10�7, and 0. Increasing �, or lowering vsat at
a fixed �, leads to significant increases in the cumulative
boost factor. For example, the total boost factor from
within the virial radius of �300 kpc grows from 17 (� ¼
0) to 1:3� 106 for � ¼ 1 without saturation. Even with
vsat=c ¼ 10�4, the � ¼ 1 case still results in about an
order of magnitude increase in the total boost, to �120.

V. APPLICATION TOWIMP MODELS

We now assemble estimates for the numerical values of
v0 and �max for WIMP models. After freezeout of WIMP
annihilation in the early Universe, the WIMPs may con-
tinue to scatter from the more abundant light standard
model particles. These scatterings suppress perturbations
in the WIMP density on subhorizon scales until these
elastic-scattering interactions cease; i.e., at kinetic decou-
pling. This postfreezeout kinetic coupling of WIMPs sup-
presses primordial perturbations on mass scales smaller
than Mc ’ 33ðTkd=10 MeVÞ�3M� [6], where Tkd is the
kinetic-decoupling temperature. The smallest substruc-
tures in the Milky Way halo will therefore have formation
masses no smaller than Mc. Close to the halo center, tidal
interactions and impulsive stellar encounters may remove
some fraction of this mass [12], but the dense cuspy cores
contributing the majority of the annihilation luminosity
likely survive [13]. Detailed calculations of the relevant
elastic-scattering reactions shows that in supersymmetry
and universal extra dimension models for WIMPs, this
mass scale spans the range 10�6M� & Mc & 100M�
[11], the precise value depending on the particle-physics
details. Objects in this mass range undergo gravitational
collapse at a redshift zc ’ 40� log10ðMc=M�Þ [20]; the
weak dependence of the collapse redshift on Mc arises
from the n ! �3 limit of the primordial power spectrum
at small scales. These first collapsed objects obtain

virial velocities vvir ¼ v0 ’ 1:0� 10�3ðMc=M�Þ1=3 �
ðzc=40Þ1=2 km s�1 and virial densities �vir ’
16ðzc=40Þ3 GeV cm�3, corresponding to �max ¼
80ðzc=40Þ3ðc=3:5Þ3fð3:5Þ=fðcÞ GeV cm�3.

For a given WIMP model, the cutoff mass Mc can be
calculated and thus �max and v0 obtained. Given these
parameters, our Eq. (10) can provide the boost factor, as
a function of radius, for given Sommerfeld parameters �
and vsat.
For example, supposewewould like a substructure boost

of BðrÞ ’ 103 locally to account for reported cosmic-ray
anomalies. For an Earth mass cutoff (Mc ¼ M�, v0 ¼
1:0� 10�3 km s�1, �max ¼ 80 GeV cm�3), taking � ¼
1, and a Sommerfeld model without saturation, the boost
factor in Eq. (10) becomes

BðrÞ ¼ ð1� fsÞ
1þ 1:75�

�max

��

�
vMW

v0

�
�
; (12)

which is* 103 for� * 0:69. Likewise, assuming� ¼ 1, a
saturation velocity vsat=c & 3:3� 10�7 is necessary to get
a local substructure boost factor greater than 103.

VI. ANGULAR DEPENDENCE OF THE
GAMMA-RAY INTENSITY

We now consider the dependence of the intensity (pho-
tons cm�2 s�1 sr�1) of gamma-ray radiation from WIMP
annihilation in the Milky Way halo as a function of the
angular separation c between a given line of sight and the
Galactic center. This intensity Iðc Þ can be written as an

FIG. 7 (color online). Intensity of gamma-ray radiation from
WIMP annihilation in the Milky Way as a function of the (cosine
of the) angle c that the line of sight makes with the Galactic
center. All three curves are normalized to have the same intensity
at cosc ¼ 0. The top (solid) curve is the intensity due to
annihilation in a smooth halo, i.e., for I / R

�2dl. The bottom

(dotted) curve is that for annihilation entirely in subhalos, i.e.,
I / R

�dl. The middle (dashed) curve is for a Sommerfeld-

enhanced annihilation [i.e., Eq. (11)] with � ¼ 1, vsat=c ¼
5:0� 10�5.
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integral

Iðc Þ /
Z 1

0
dl½ ��ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ R2

0 � 2lR0 cosc
q

Þ�2

� Bð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ R2

0 � 2lR0 cosc
q

Þ; (13)

along a line-of-sight distance l. If the halo is smooth, then
BðrÞ ¼ 1, and the integral is I / R

��2dl, of the square of

the smooth-halo density along the line of sight. If all of the
annihilation in the halo took place in highly dense and very
small subclumps, then the intensity would depend on an
integral I / R

��dl simply of the density (rather than den-
sity squared). If the intensity depends on the integral of ��2,
then the intensity will vary more rapidly with c , rising
rapidly toward the Galactic center, than if it depends on the
integral of ��, as shown in Fig. 7.

Most generally, there may be annihilation in both the
smooth component and in the clumped component, in
which case the angular dependence of the intensity will
fall somewhere in between [21], as illustrated in Fig. 7.
Measurement of this angular variation may help shed
empirical light on the existence of a boost factor.

VII. DISCUSSION

It has long been recognized that there may be a hierarchy
of structure in the Milky Way halo, with substructure
existing all the way down to the mass scale of a fraction
of an Earth mass, more than 22 orders of magnitude from
the�1012M� Milky Way halo mass. It has also been noted
that this substructure may have serious implications for the
dark-matter–annihilation rate in the halo. If the WIMP has
the canonical velocity-independent h�vi, then the boost
factor could be as high as ð�max= ��Þ � 200, if all of the
substructure was preserved. If the WIMP has a
Sommerfeld enhancement to the annihilation rate, the
boost factor could be even higher, and perhaps dramati-
cally so.

Unfortunately, the 22 or more orders of magnitude be-
tween the substructure cutoff mass and the Milky Way
mass prevent the survival of the smallest-scale substructure
to be addressed directly with simulations, and reliable
analytic calculations of the survival fraction are similarly
difficult. In earlier work [15], we used the nearly self-
similar behavior of hierarchical clustering to develop an
analytic approach to estimate the substructure survival.
The central result of that work was a prediction that
Pð�Þ, the probability of any given point in the Galactic
halo having a local density �, will have a high-density
power-law tail.

Here, we have fit the parameters of that analytic model
to new N-body simulations that can resolve the high-
density tail in Pð�Þ. The analytic model then allows us to
extrapolate the behavior of the simulations to mass scales
far below the simulation’s resolution scale. As a result, we
have a simple analytic expression for the distribution of

dark-matter densities within the Milky Way halo, as a
function of galactocentric radius. The key qualitative result
is that the fraction of the Milky Way volume occupied by
substructures is small (1� fs & 10�3 in the central re-
gions, �10�2 in the outskirts). In particular, when we
calculate the boost factor for WIMPs with the canonical
(i.e., no) dependence of h�vi on the velocity, we find that it
is small: only about 50% at the solar radius, and only �17
for the total boost within the virial radius. The PDF,
supplemented with a scaling for the subhalo velocity dis-
persion with subhalo density, allows us to also analytically
estimate the boost factor from substructure in the presence
of a Sommerfeld enhancement. The central result here is
given in Eqs. (10) and (11), which provide a boost factor in
terms of the power-law index � for the velocity scaling of
h�vi, the saturation velocity vsat, the maximum substruc-
ture density �max ’ 80 GeV cm�3, and the velocity disper-
sion v0 of the smallest halos. We estimate numerically that
local (8 kpc) boost factors* 103 can be obtained with� *
0:69, or for � ¼ 1 with vsat=c < 3:3� 10�7.
We also discussed the finite width of the density distri-

bution smoothly distributed component of halo dark mat-
ter, but find that the effects of this finite width on the boost
factor are small.
There are several caveats to our results and several

improvements that can be pursued in future work.
(1) Hierarchical clustering is not a precisely self-similar
process. In particular, given that the primordial mass power
spectrum PðkÞ ! kn has a power-law index that becomes
smaller at higher k (smaller distance/mass scales, earlier
collapse times), the power-law index � in our work will
probably have some scale dependence, becoming, if any-
thing, larger at higher densities. Taking this into account,
our estimates for the boost factors due to substructure are
probably on the high side. (2) The small-scale mass cutoff
Mc for canonical WIMPs [11] may not apply if the new
interactions required for a Sommerfeld enhancement are
taken into account. The cutoff mass may therefore be very
different. If it is much larger, than the boost factors will be
reduced (substructures will not extend to such small
scales). If the cutoff mass is much smaller, the boost factor
may be increased relative to our estimates, but, given the
weak dependence of zc and thus �max onMc, not by much.
(3) While identification of the high-density power-law tail
in Pð�Þ and measurement of its small amplitude constitute
a big step forward, our N-body measurement of the pa-
rameters required to describe the distribution Pð�; rÞ can
certainly be improved upon. It will be important in future
work to measure fsðrÞ more precisely, and to measure and
determine the r dependence of � and �. (4) Figure 3
indicates that at densities above �max, the � ¼ 0 power
law for Pð�Þ will steepen to something closer to � ¼ 2.
This steep high-density tail is due to the small-r �� 1=r
dependence in the earliest NFW halos. For a canonical
WIMP with a velocity-independent h�vi, this steepening
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will not affect the results, since the integrand in Eq. (6) is
proportional to ��� and hence dominated by the low
density (i.e., near �max) end of this steep tail. With a
Sommerfeld enhancement, however, the integrand is pro-
portional to �1:75��� [Eq. (9)], which for � ¼ 2 is domi-
nated by the high-density end if�> 8=7. In other words, if
�> 8=7, the substructure annihilation enhancement will
be dominated by the 1=r cusps in the earliest NFW sub-
halos, rather than the � ¼ 0 part of Pð�Þ that we have
considered until now. A more detailed calculation of this
effect would depend sensitively on the smallest radius at
which the 1=r NFW behavior is valid, and we leave such a
study to future work.
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