Polarimetry as a tool (for exoplanet detection and characterization)

Tiffany Meshkat

With contributions from Daphne Stam (TU Delft), Christian Ginski (Leiden University), Ricky Nilsson (Caltech)

Unpolarized starlight

Polarized reflected light!

Unpolarized starlight

State of polarization includes:

- Degree of polarization P= polarized flux / total flux
- Direction of polarization χ =angle w.r.t. the reference plane

Polarized reflected light!

Important uses of Polarimetry

- Detecting exoplanets: polarized signal next to an unpolarized star
- Confirming exoplanet detections: background sources are usually unpolarized
- Characterizing exoplanets: atmospheres and/or planet surfaces
 - Some atmospheric properties cannot be measured with flux alone!

Degree of polarization from reflected starlight dependencies

- Composition and structure of planet's atmosphere
 - Scattered by gaseous molecules
 - Scattered by aerosol and/or cloud particles
- Reflection properties of the planets surface
- Wavelength of light
- Illumination and viewing angle
 - Planetary phase angle

Applications of Polarimetry: Particles

 Polarization of reflected light is very sensitive to the microphysical properties (size, composition, shape) of the scattering particles:

Source: Olga Muñoz

Applications of Polarimetry: atmosphere and surface

 Polarization of reflected light is very sensitive to the composition and structure of a planetary atmosphere and/or surface:

Polarimetry of reflected light from planets has been around for a long time

- 1929: Bernard Lyot measured the degree of linear polarization as a function of phase-angle of Venus, Mars, Jupiter, and Saturn
- 1957: Kuiper measured infrared polarization of Venus (2 microns)
- 1970s: Measure polarization of reflected light from 0.35 to 0.99 microns to derive size, composition, and altitude of Venus' cloud particles
- 1980s: Confirmed by probes: Pioneer Venus, haze characterization, variability in hazes

Polarization of Earth

 Broadband polarimetric measurements of disk-integrated Earthshine found a (true) linear polarization of about 30-35% at 90° (Dollfus et al. 1957)

- Sterzik et al. 2012 used FORS/VLT to measure linear spectropolarization of Earthshine
 - April: 10-15% cloud-free land vegetation
 - June: Little or absent cloud-free vegetation surfaces
 - Used to infer biosignatures

Table 1 Earth observations						
	Observing date					
Observations	25 April 2011, 09:00 UT	10 June 2011, 01:00 ит				
View of Earth as seen from the Moon						
Sun–Earth–Moon phase (degrees)	87	102				
Ocean fraction in Earthshine (%)	18	46				
Vegetation fraction in Earthshine (%)	7	3				
Tundra, shrub, ice and desert fraction in Earthshine (%)	3	1				
Total cloud fraction in Earthshine (%)	72	50				
Cloud fraction $\tau > 6$ (%)	42	27				

Polarization of Earth

- Karalidi et al. (2010) made a model of earth with realistic cloud coverage from remote-sensing satellite data (MODIS)
 - 64% liquid water clouds, 36% ice clouds, 28% 2 cloud layers

Exoplanets: Simulations of reflected light gaseous planets

Planetary phase angle 90° Jupiter-like horizontally homogeneous atmospheres. Stam et al. 2004

Exoplanets: Simulations of Earth-like Exoplanets (cloud free)

Planetary phase angle 90° Cloud-free planets with surfaces covered by: 100% vegetation, 100% ocean, 30% veg + 70% ocean. Stam et al. 2008

Exoplanets: Simulations of Earth-like Exoplanets (with clouds)

Planetary phase angle 90°

Cloud-free Planets with surfaces covered by: 100% vegetation, 100% ocean, 30% veg + 70% ocean. Mixed planet with cloud coverage of 20%, 60%, 100%.

Stam et al. 2008

Challenges of polarimetry

- Other sources of polarimetry
 - Instrumental polarimetry
 - Optics/reflections off mirrors
 - Interstellar clouds
 - Stellar small unresolved disk
- Degree of polarization is very small at small phase angles
- Faint objects are difficult to observe lose photons
- Lack of calibration sources
- Fitting data can be difficult -- radiative transfer algorithms with polarization are complicated and time-consuming
- Reflected light vs thermal ...

Current imaged planets are self-luminous

Thermal polarization signal

De Kok et al. 2011 (see also Stolker et al. 2017) • Challenges:

- Net thermal polarization signal requires asymmetry (otherwise polarized thermal signal will cancel out)
- Banded and oblate planet will give very similar polarization signal
- Infrared polarized signal confirms presence of scattering particles
- Variability in polarization will reveal moving clouds, hot spots, planet spin axis

Current thermal polarization from the ground

- Exoplanets -- non-detections
 - HR 8799 P<1%, PZ Tel B P<0.1%. Van Holstein et al. (2017)</p>
- Brown dwarfs:
 - Typically P≤1%
 - Only 3 published near-IR polarimetric T-dwarf: all null results/upper limits
 - Unfavorable viewing angle or cloudless?
- Debris disks
- Protoplanetary disks

Post-processing with polarimetry

- Dual-beam polarimetric imaging
 - Split beam into orthogonally polarized beams
 - Opposing preferences to sky rotation
 - Pupil-stabilized allows sky rotation, but not fixed polarization direction
 - Polarimetric angular differential imaging (PADI)

Example: HR 8799 with NACO/VLT Dither pattern and rotate half-wave plate (+22.5°) De Juan Ovelar 2013

Stokes parameters

TABLE 2.1: FIRST LEFT AND RIGHT DITHERED POLARIMETRIC BLOCKS										
$ heta_{ m HWP}$ (°)	$I_{ m UL}$	-	$I_{ m LL}$	=	Beam subtr.	$I_{ m UR}$	-	$I_{ m LR}$	=	Beam subtr.
0	I+Q'	-	I-Q'	=	$Q_{1,1}^\prime$	I+Q'	-	I-Q'	=	$Q_{1,5}^{\prime}$
22.5	I + U'	-	I-U'	=	$U_{1,1}^{\prime}$	I + U'	-	I-U'	=	$U_{1,5}^{\prime}$
45	I-Q'	-	I+Q'	=	$Q_{2,1}^\prime$	I-Q'	-	I+Q'	=	$Q_{2,5}^{\prime}$
67.5	I-U'	-	I+U'	=	$U_{2,1}^{\prime}$	I - U'	-	I+U'	=	$U_{2,5}^{\prime}$
90	I+Q'	-	I-Q'	=	$Q_{1,2}^\prime$	I+Q'	-	I-Q'	=	$Q_{1,6}^{\prime}$
112.5	I + U'	-	I-U'	=	$U_{1,2}^{\prime}$	I + U'	-	I-U'	=	$U_{1,6}^{\prime}$
135	I-Q'	-	I+Q'	=	$Q_{2,2}^\prime$	I-Q'	-	I+Q'	=	$Q_{2,6}^{\prime}$
157.5	I - U'	-	I+U'	=	$U_{2,2}^{\prime}$	I-U'	-	I+U'	=	$U_{2,6}^{\prime}$
÷	:	÷	:	÷	:	:				
337.5	I - U'	-	I+U'	=	$U_{2,4}^{\prime}$	I-U'	-	I+U'	=	$U_{2,8}^{\prime}$

De Juan Ovelar 2013

Results from HR 8799 planet search with NACO

Polarization limits of [H, Ks]:

- HR 8799 b [14.8, 11.2]%
- HR 8799 c [4.7, 5.9]%
- PADI increases contrast by up to 1 magnitude

De Juan Ovelar 2013

Results from HR 8799 planet search with SPHERE

Van Holstein et al. 2017

- Van Holstein et al. 2017
- Describe instrument and telescope polarization with absolute polarimetric accuracy of 0.1%
- Polarization limits of 1% for all four planets

GPI/Gemini (H+K band)

Available instruments

- ZIMPOL/SPHERE/VLT (500-900 nm)
- IRDIS/SPHERE/VLT (Y,J,H,K)

Benisty et al. 2017

WIRC-POL/Palomar (NIR spectropolarimeter)

Perrin et al. 2014

WIRC-POL at Palomar

200-inch Hale telescope and WIRC upgrade

A unique telescope at Palomar Observatory

- ★ Largest equatorial mounted telescope in the world
- ★ Extremely stable tracking
- ★ No differential motion of optics
- ★ Low and stable instrument polarization
- ★ 100 ppm precision demonstrated with WIRC (Wide-field InfraRed Camera) at prime focus

Source: Ricky Nilsson

WIRC-POL Survey

- ★ Spectro-polarimetric library of ~1000 brown dwarfs across MLTY spectral types
- \star Baseline survey at J and H (R~120-150)
- \star Follow up any >3 σ signature for SP variability

Source: Ricky Nilsson

WIRC-POL Survey

- Luhman 16B (Crossfield et al. 2014) and other brown dwarfs in L/T transition show signs of patchy clouds
- Polarization signal above 1% or variability on timescale of rotation period -> clouds!

Conclusions

- Polarization is a powerful tool for exoplanet detection, confirmation, and characterization
- Reflected light polarization can reveal some atmospheric properties which cannot be measured with flux alone!
- Thermal polarization signal from brown dwarfs and exoplanets is expected to be very small <1%
- Other sources of polarization remain a challenge, in particular for low flux sources

Sources:	Jensen-Clem et al. 2016	Stam et al. 2008
De Kok et al. 2011	Lyot 1929	Stolker et al. 2017
De Juan Ovelar 2013 PhD thesis	Millar-Blanchaer et al. 2016	Van Holstein et al. 2017
Hansen & Hovenier 1974	Stam et al. 2004	