

Waveform modeling for LIGO parameter estimation: status & challenges for LISA

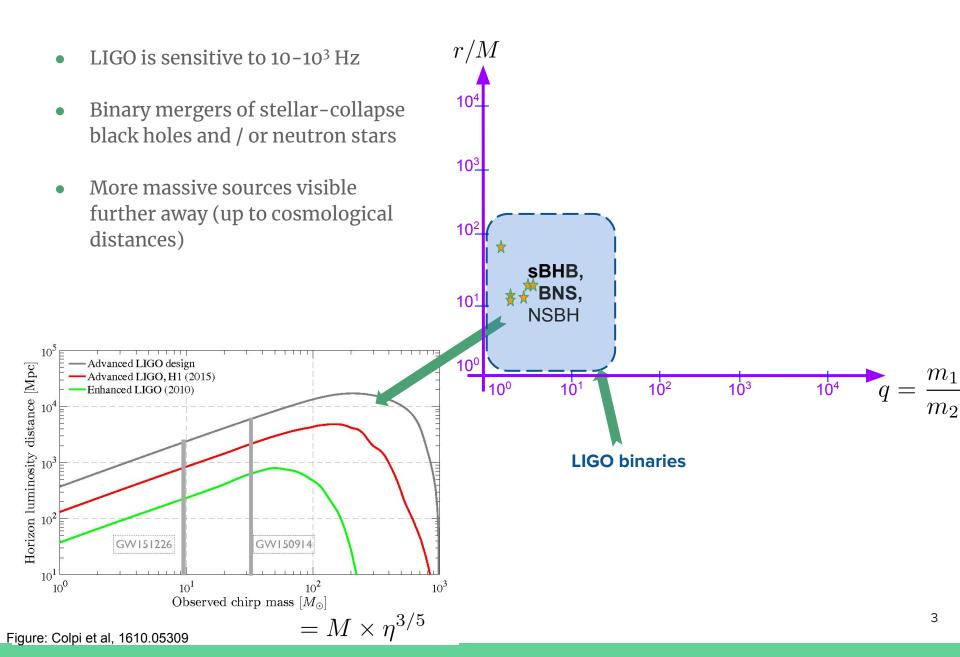
Prayush Kumar Cornell University

The Architecture of LISA Science Analysis: Imagining the Future January 16 - 19, 2018

Outline

- 1. LIGO sources
- 2. Source modeling:
 - a. PN theory
 - b. NR (brief)
 - c. EOB formalism
 - d. Phenomenological models
 - e. Simplification of spin-precession
- 3. Application to LIGO parameter estimation:
 - a. PE requirements
 - b. Model-order reduction
 - c. Reduced-order Quadrature
- 4. LISA sources
 - a. MBH
 - b. EMRI & IMRIs
- 5. Summary

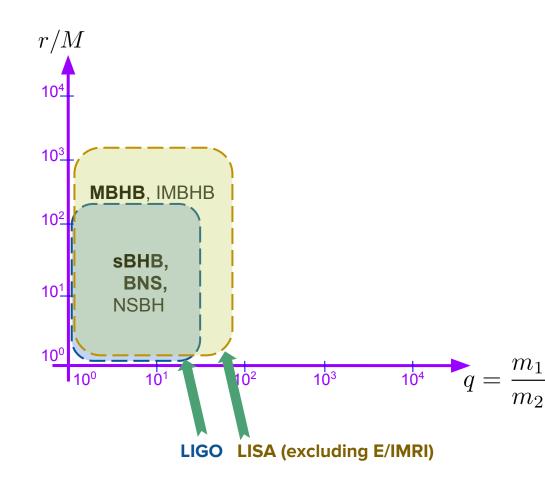
1. LIGO Sources



1. LIGO Sources

- LIGO is sensitive to 10-10³ Hz
- Binary mergers of stellar-collapse black holes and / or neutron stars
- More massive sources visible further away (up to cosmological distances)
- Waveform modeling research into stellar BHB for LIGO will carry over to MBHB / IMBHB sources for LISA

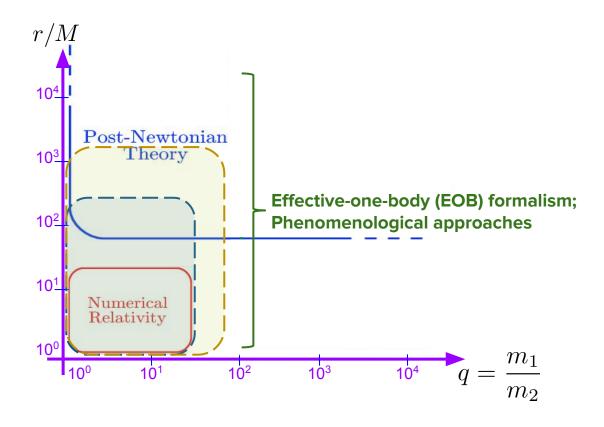
[Including ranges of parameters not shown, e.g. BH spins, orbital eccentricity]



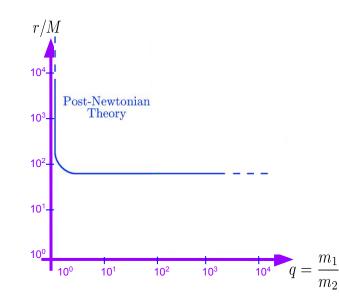
Outline

- 1. LIGO sources
- 2. Source modeling:
 - a. PN theory
 - b. NR (very brief)
 - c. EOB formalism
 - d. Phenomenological models
 - e. Simplification of spin-precession
- 3. Application to LIGO parameter estimation:
 - a. PE requirements
 - b. Model-order reduction
 - c. Reduced-order Quadrature
- 4. LISA sources
 - a. MBH
 - b. EMRI & IMRIs
- 5. Summary

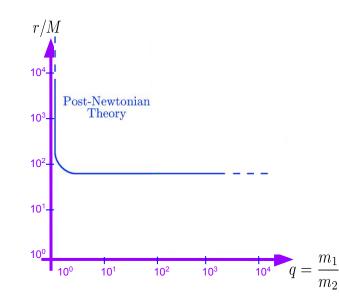
2. Source modeling



- Slow-motion weak-field approximation
- Perturbative expansions in orbital velocity (v/c)

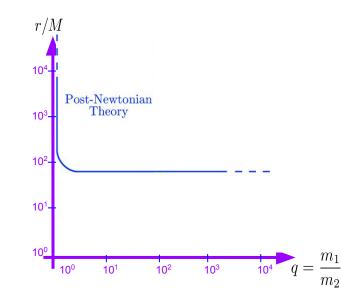


- Slow-motion weak-field approximation
- Perturbative expansions in orbital velocity (v/c)
- Equation of Motion: 2PN EoM - [Ohta et al, '73], 3.5PN EoM - [Iyer & Will, '93] 4PN EoM - [Damour et al, '14; Bernard et al '15] 1.5PN SO - [Barker et al '75] 2PN SS - [Kidder et al, '93] 4PN NNLO SS - [Hartung et al '11, Levi et al '11] 3.5PN NNLO SO - [Hartung et al '11, Marsat et al '13]



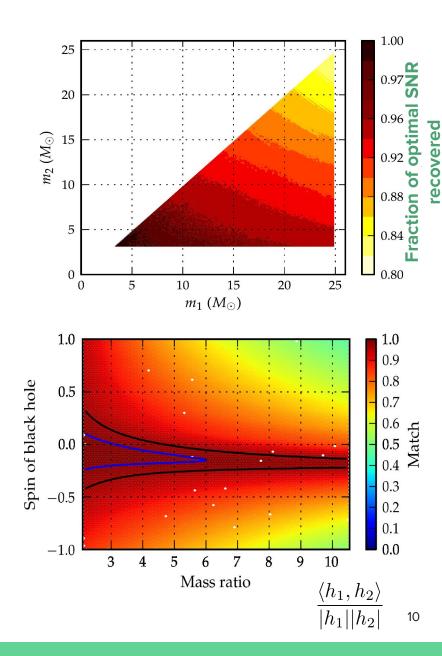
- Slow-motion weak-field approximation
- Perturbative expansions in orbital velocity (v/c)
- State of the art (circa '14):

	No Spin	Spin-Linear	Spin-Squared
Conservative Dynamics	4PN ^a [121, 122, 133] [126, 158+164]	3.5PN [52] 54] 141] [140] 165–169]	3PN [52, 54, 138] [137, 170–172]
Energy Flux	3.5PN	4PN	2PN
at Infinity	[95, 173, 174]	[175+178]	[53, 54, 179-181]
RR Force	4.5PN	4PN	4.5PN
	[37, 93, 183-185]	[186-188]	[189]
Waveform	3.5PN	4PN	2PN
Phase ^c	[190]	[175, 177, 178]	[54, 179 -181, 191]
Waveform	3PN ^d	2PN	2PN
Amplitude ^e	[194-197]	[191, 198]	[53, 54, 191, 198]



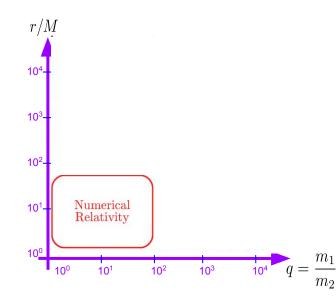
9

- Accurate enough for detecting NS-NS binaries & low-mass BBHs with LIGO
- However, PN is not nearly sufficient for binary masses $\gtrsim 12 M_{\odot}$
- PN's performance gets worse with spins in the picture
- If heavy BHs (10 $60 M_{\odot}$) dominate LIGO detection rates, PN alone not enough for LIGO detection & PE



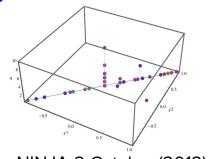
2b. Source modeling: Numerical Relativity

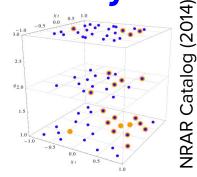
• Direct numerical evolutions of fully-nonlinear Einstein's equations

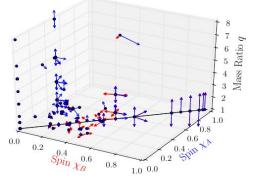


2b. Source modeling: Numerical Relativity

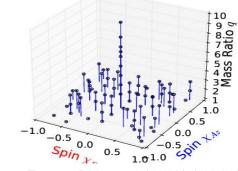
- Direct numerical evolutions of fully-nonlinear Einstein's equations
- Current catalogs



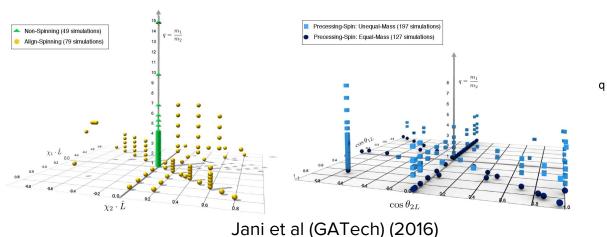




SXS Public Catalog (2013)



Chu, Fong, PK et al (SXS) (2016)

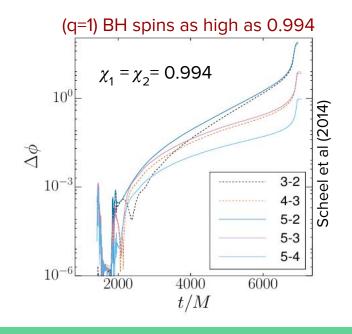


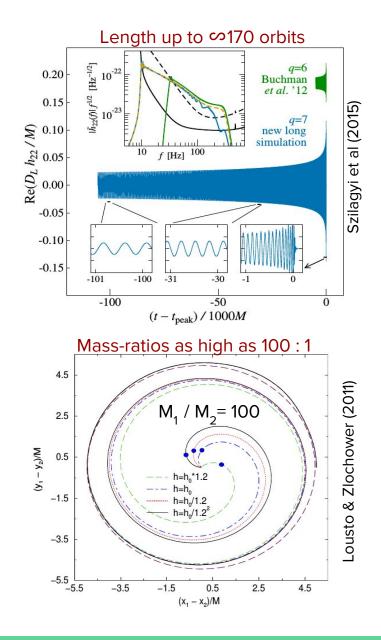
0.8 0.6 0.4 0.2 ¹ 0.5 0_{-0.5} χ_2 0 χ1 0.5 -0.5 -1 -1

Healy et al (RIT) (2017)

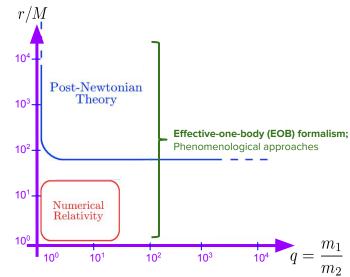
2b. Source modeling: Numerical Relativity

- Direct numerical evolutions of fully-nonlinear Einstein's equations
- Current catalogs
- New frontiers
- > Critical for GW models of binary mergers





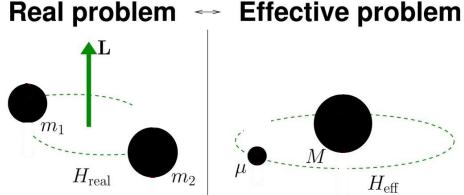
• General relativistic extension of 2-body to 1-body mapping of Newtonian problem



- General relativistic extension of 2-body to 1-body mapping of Newtonian problem
- Conservative dynamics:

$$ds_{\rm eff}^2 = -A(R_{\rm eff})dt_{\rm eff}^2 + \frac{D(R_{\rm eff})}{A(R_{\rm eff})}dR_{\rm eff}^2 + C(R_{\rm eff})R_{\rm eff}^2 \, d\Omega_{\rm eff}^2$$

- Identify:
 - $\begin{array}{c} m_1 + m_2 \rightarrow M; \\ m_1 m_2 / M \rightarrow \mu; \end{array}$ 0
 - 0
- Require the effective spacetime reduce to Schwarzschild at first order leads to (2PN)
- Mapping energy levels between 2-body and EOB description gives



$$H_{\rm PN}^{2\,{\rm body}} \to H^{EOB}$$

$$A(R) = 1 - \frac{2M}{R} + 2\eta \left(\frac{M}{R}\right)^{3}; \ D(R) = 1 - 6\eta \left(\frac{M}{R}\right)^{2}$$
Pade re-summed

• Radiative dynamics:

$$\frac{dE}{dt} \propto -\frac{\omega^2}{8\pi} \sum_{l,m} m^2 \left| \frac{\mathcal{R}}{M} h_{lm}(t) \right|^2$$

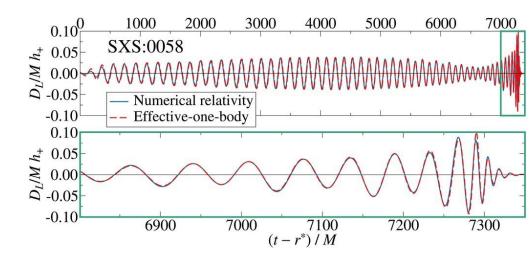
• Waveform multipoles are factorized:

$$h_{lm} = h_{lm}^A h_{lm}^B T_{lm} e^{i\delta_{lm}} c_{lm} N_{lm}$$

where, all but the last factor are **re-summed**

• Several free parameters that are calibrated to NR

Real problem \leftarrow Effective problem $\stackrel{\mathbf{L}}{\underset{H_{\text{real}}}{\overset{\mathbf{L}}$

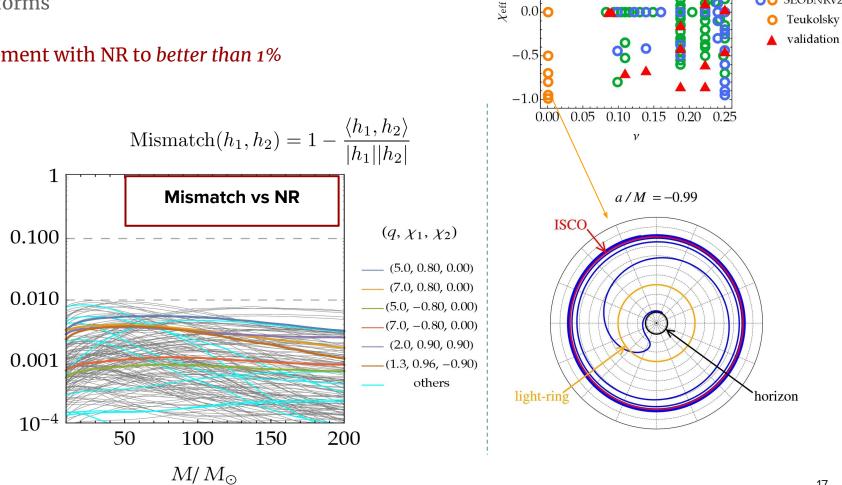


1.0

0.5

ONGINO

- Cutting-edge: EOBv4
- Calibrated to 141 NR + 10 numerical Teukolsky waveforms
- Agreement with NR to better than 1%



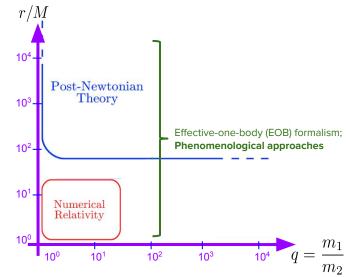
OOO SEOBNRv4 **OO** SEOBNRv2

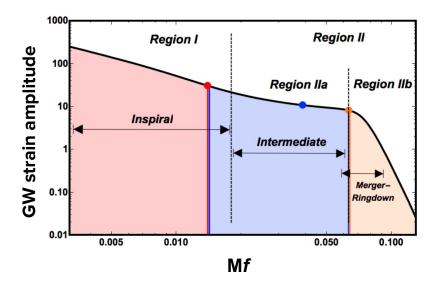
2d. Source modeling: Phenomenological approaches

- Guided by need to reduce computational cost of waveform generation, closed-form GW strain models in frequency-domain were developed
- PN-inspired ansatz is taken for amplitude/phase, and PN/EOB+NR hybrid waveforms are used to calibrate the ansatz

$$A_{\text{Int}} = A_0 \left(\delta_0 + \delta_1 f + \delta_2 f^2 + \delta_3 f^3 + \delta_4 f^4 \right)$$
$$\phi_{\text{Int}} = \frac{1}{\eta} \left(\beta_0 + \beta_1 f + \beta_2 \operatorname{Log}(f) - \frac{\beta_3}{3} f^{-3} \right)$$

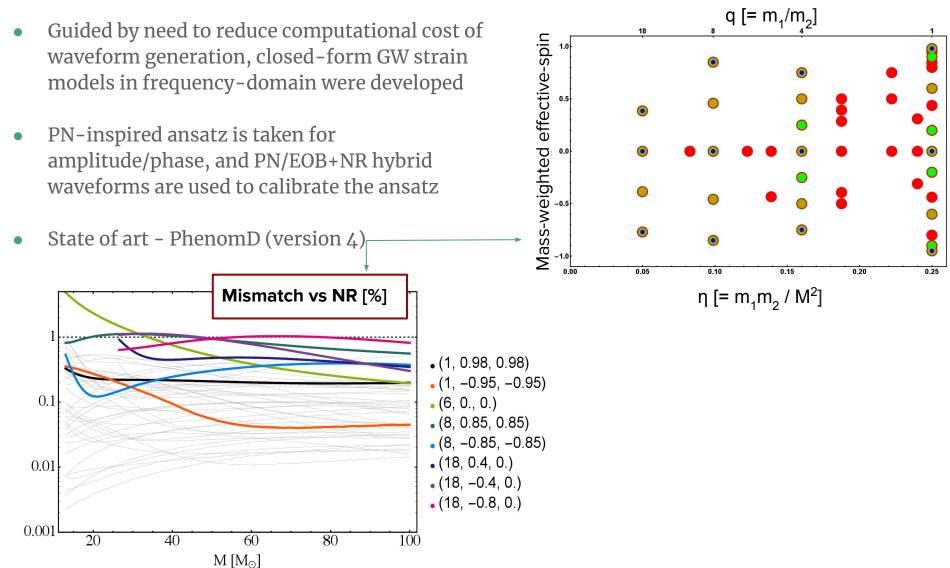
$$\begin{aligned} \frac{A_{\rm MR}}{A_0} &= \gamma_1 \frac{\gamma_3 f_{\rm damp}}{(f - f_{\rm RD})^2 + (\gamma_3 f_{\rm damp})^2} e^{-\frac{\gamma_2 (f - f_{\rm RD})}{\gamma_3 f_{\rm damp}}} \\ \phi_{\rm MR} &= \frac{1}{\eta} \left\{ \alpha_0 + \alpha_1 f - \alpha_2 f^{-1} + \frac{4}{3} \alpha_3 f^{3/4} \right. \\ &+ \alpha_4 \tan^{-1} \left(\frac{f - \alpha_5 f_{\rm RD}}{f_{\rm damp}} \right) \right\} . \end{aligned}$$





Khan et al (2015), 1508.07253; Santamaria et al (2010), 1005.3306; Ajith et al (2007), 0704.3764/0710.2335; Ajith et al (2009), 0909.2867;

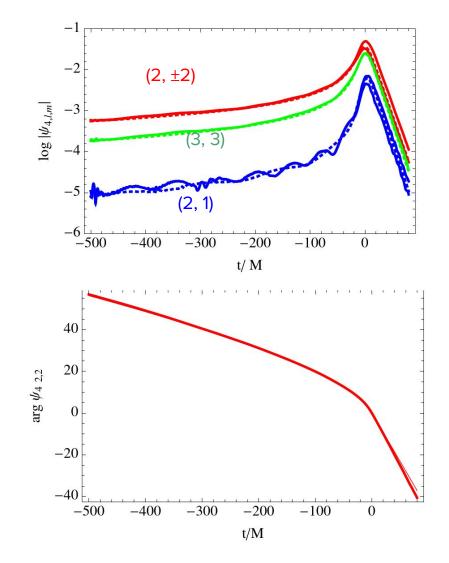
2d. Source modeling: Phenomenological approaches



Khan et al (2015), 1508.07253; Santamaria et al (2010), 1005.3306; Ajith et al (2007), 0704.3764/0710.2335; Ajith et al (2009), 0909.2867;

2e. Source modeling: Including spin-induced orbital precession

- So far source models included restricted spin description, with both BH spins (anti)parallel to orbital ang. momentum
- Dominant GW emission directions are ⊥ to the plane of the binary. In a coordinate system aligned with that direction (QA), most of the signal power resides in the (l = 2, |m| = 2) spin-weighted spherical harmonics
- Schmidt et al <u>identified</u> both GW mode amplitude (in 2010) and phasing (in 2012) of QA-frame waveforms for precessing binaries <u>with</u> equivalent non-precessing-binary waveforms!
- Application generic Phenom / EOB models developed by applying a time-dependent rotation to non-precessing binary waveforms.



Outline

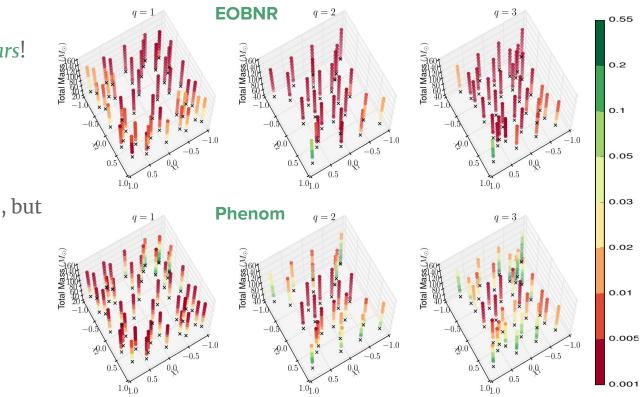
- 1. LIGO sources
- 2. Source modeling:
 - a. PN theory
 - b. NR (very brief)
 - c. EOB formalism
 - d. Phenomenological models
 - e. Simplification of spin-precession
- 3. Application to LIGO parameter estimation:
 - a. PE requirements
 - b. Model-order reduction
 - c. Reduced-order Quadrature
- 4. LISA sources
 - a. MBH
 - b. EMRI & IMRIs
- 5. Summary

3a. LIGO PE: Model requirements

- A. Model accuracy up to reqd. SNR:
- B. Low cost of generation:
 - a. EOB is expensive $O(10-10^2 s)$

 \Rightarrow time for PE with 10⁷ evaluations ~ 3 - 30 years!

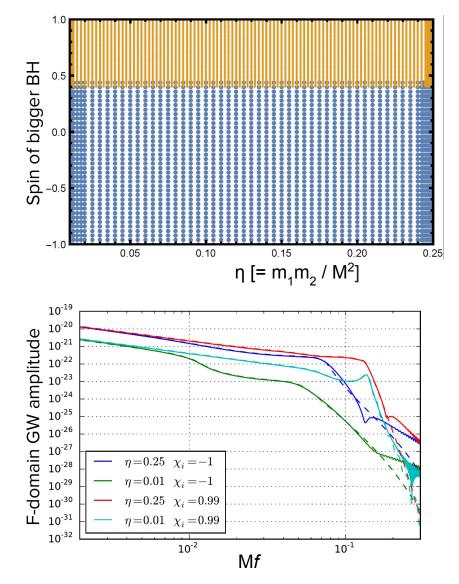
SNR	10	100	1000
Mismatch (vs NR)	< 2 %	< 0.02%	< 2x10 ⁻⁴ %



b. Phenom is inexpensive, but can be less reliable

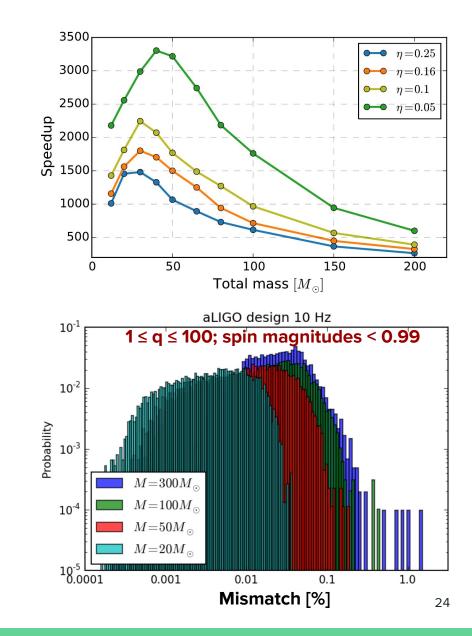
3a. LIGO PE: Reduced-order modeling

- ROM is a technique to create surrogate models for computationally expensive waveform models:
 - Define a region of parameter space
 - Compute a basis for GW amplitude & phase
 - Compute projection coefficients for a dense set of training waveforms & interpolate them
 - Store spline-interpolation coefficients on disk
- Evaluation of ROM is straightforward:
 - Read in spline coefficients
 - Evaluate splines at required parameter values
 - Combine with basis vectors to generate GW templates



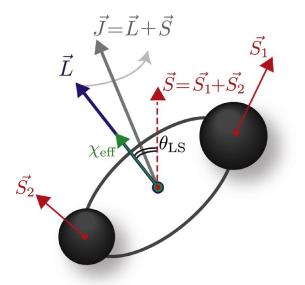
3a. LIGO PE: Reduced-order modeling

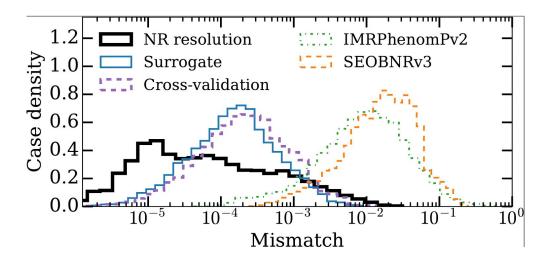
- ROM is a technique to create surrogate models for computationally expensive waveform models:
 - Define a region of parameter space
 - Compute a basis for GW amplitude & phase
 - Compute projection coefficients for a dense set of training waveforms & interpolate them
 - Store spline-interpolation coefficients on disk
- Evaluation of ROM is straightforward:
 - Read in spline coefficients
 - Evaluate splines at required parameter values
 - Combine with basis vectors to generate GW templates
- Evaluation in polynomial time (esp. EOB)
- Marginal loss in accuracy



3a. LIGO PE: ROM of NR waveforms

- Time-domain surrogates have been built for NR waveforms directly. Used 744 NR simulations:
 - Full-precession; l <= 4 modes
 - $1 \le q \le 2$; spin magnitudes < 0.8
 - Length \approx 4500M
- > Direct application of NR to PE
- Valuable tool for waveform modeling





• Interpolate portions of Bayesian likelihood directly

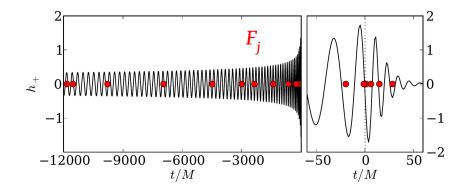
$$p(\theta|d) = p(d|\theta) \frac{p(\theta)}{p(d)}$$

$$\log \mathcal{L} \simeq -2\mathcal{R} \left[\Delta f \sum_{i=1}^{L} \frac{d^*(f_i)h(f_i)}{S_n(f_i)} \right]$$

• Interpolate in frequency along-with parameters λ

$$h(f;\lambda) = \sum_{i=1}^{m} c_i(\lambda)e_i(f)$$

• Choose *m* points in frequency, such that waveform specified there alone can be used to interpolate the whole

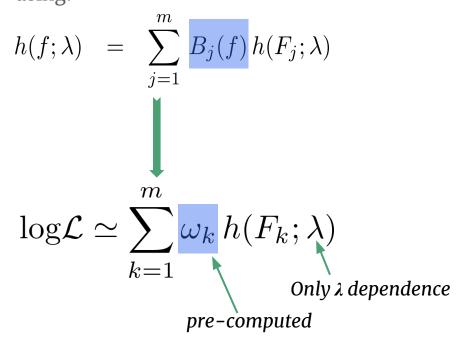


$$h(f;\lambda) = \sum_{i=1}^{m} e_i(f) \left(\sum_{j=1}^{m} [e_l(F_k)]_{ij}^{-1} h(F_j;\lambda) \right)$$
$$h(f;\lambda) = \sum_{j=1}^{m} B_j(f) h(F_j;\lambda)$$
$$pre-computed$$

• Simplify computation of Bayesian likelihood:

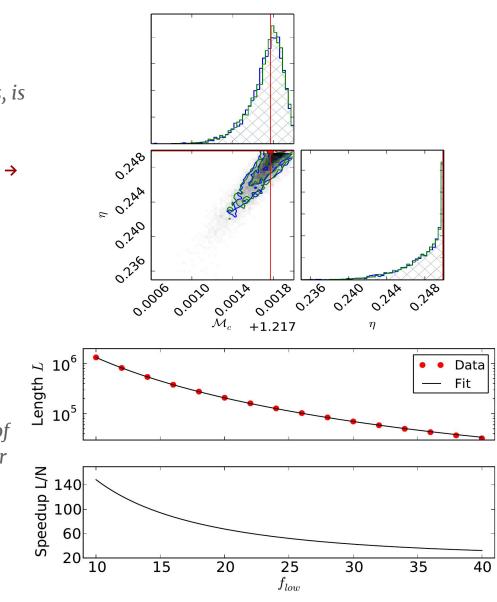
$$\log \mathcal{L} \simeq -2\mathcal{R} \left[\Delta f \sum_{i=1}^{L} \frac{d^*(f_i)h(f_i)}{S_n(f_i)} \right]$$

using:



 \Rightarrow Instead of *L* evaluations of h(f), we get away with a much smaller number *m*

- Benefits:
 - Increases speed of PE x 10²
 [net speed up for time-domain models, is
 10⁴ 10⁵ x]
 - Time for PE reduced from O(weeks) → O(hours)!
- Limitations:
 - Need h(f) in closed form
 - Sensitive to detector PSD
 - Extension to LISA PE not straightforward: - will need inclusion of inclination angle, sky angles & detector location in orbit within λ

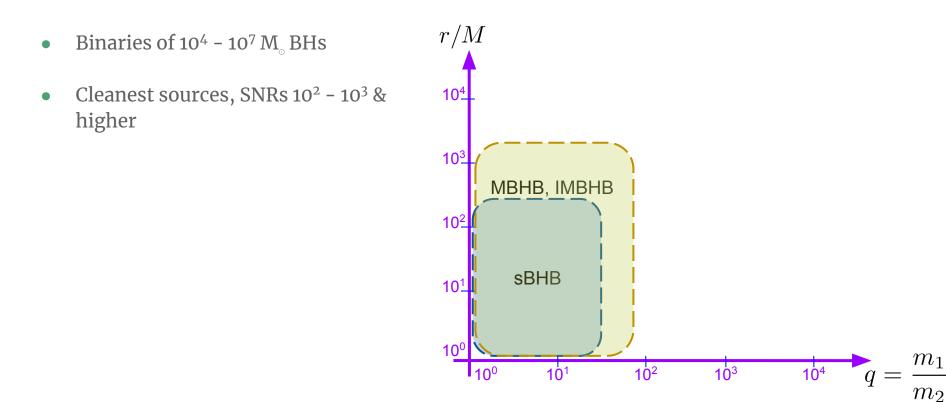


Outline

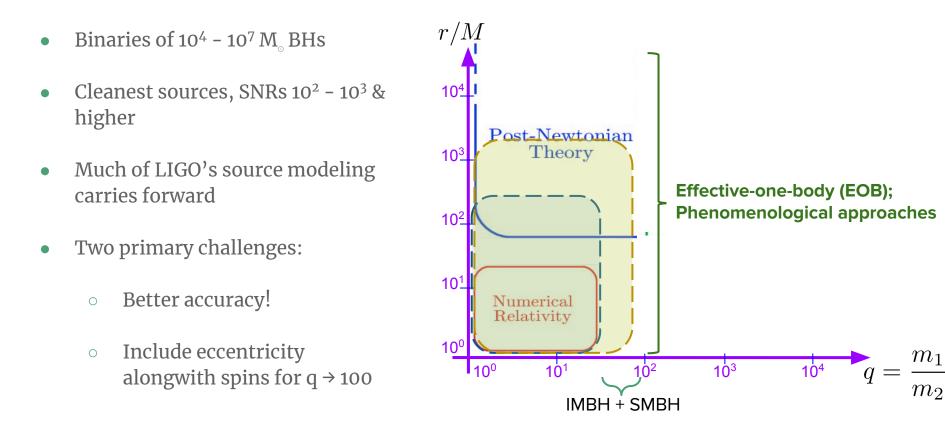
- 1. LIGO sources
- 2. Source modeling:
 - a. PN theory
 - b. NR (very brief)
 - c. EOB formalism
 - d. Phenomenological models
 - e. Simplification of spin-precession
- 3. Application to LIGO parameter estimation:
 - a. PE requirements
 - b. Model-order reduction
 - c. Reduced-order Quadrature
- 4. LISA sources
 - a. MBH
 - b. EMRI & IMRIs

5. Summary

4. LISA Sources: MBHB, IMBHB

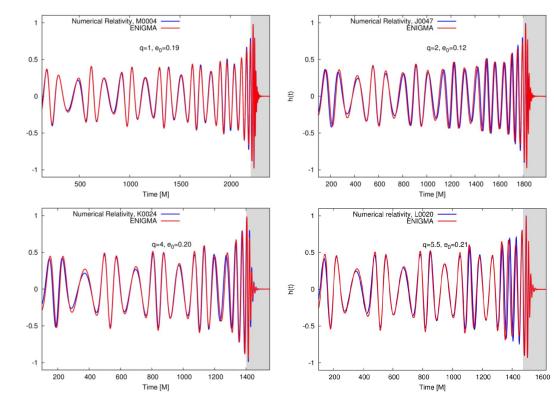


4. LISA Sources: MBHB, IMBHB



4. LISA Sources: MBHB, IMBHB

- Binaries of $10^4 10^7 M_{\odot}$ BHs
- Cleanest sources, SNRs 10² 10³ & higher
- Much of LIGO's source modeling carries forward
- Two primary challenges:
 - Better accuracy!
 - Include eccentricity along with spins for $q \rightarrow 100$
 - Some progress in IMR eccentric modeling (non-spin)
 - Need to extend to high-q & combine with spin effects

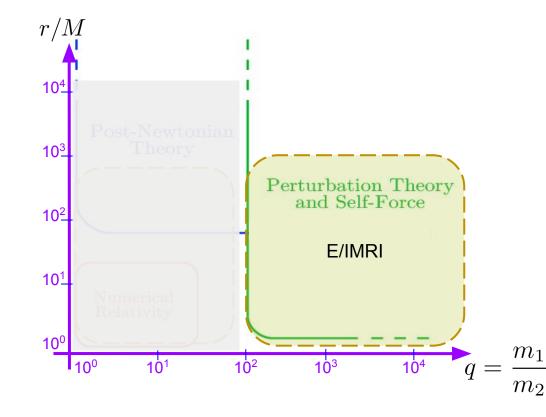


Huerta, Moore, PK et al (2017), 1711.06276;

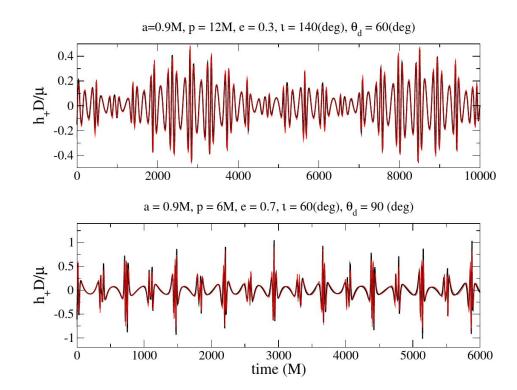
r/MEMRIs will be seen by LISA at SNRs 20 - 100s, few every year! 10⁴ 10³ 10² E/IMRI 10¹ 10⁰ $\underline{m_1}$ 10¹ 10² 10³ 10⁰ 10⁴ \boldsymbol{q}

 m_2

EMRIs will be seen by LISA at SNRs 20
 - 100s, few every year!

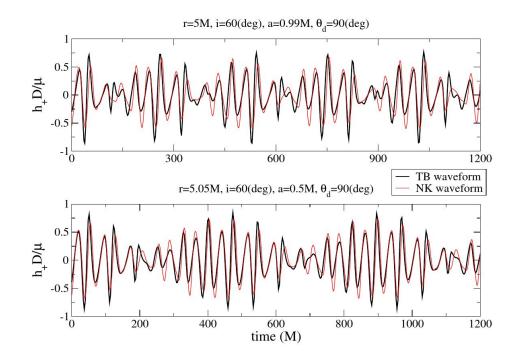


- EMRIs will be seen by LISA at SNRs 20
 100s, few every year!
- Kludge waveforms are available for EMRIs:
 - Inexpensive and tested for PE (under idealized conditions)
 - Agree with numerical Teukolsky codes



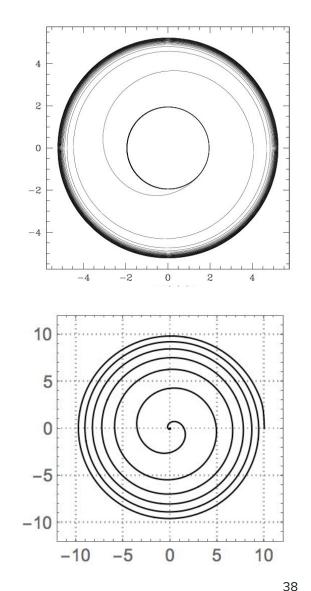
- EMRIs will be seen by LISA at SNRs 20

 100s, few every year!
- Kludge waveforms are available for EMRIs:
 - Inexpensive and tested for PE (under idealized conditions)
 - Agree with numerical Teukolsky codes ... up until r ~ 5M
 - Sufficient for detection and maybe even PE – e.g. $O(10^{-2})$ accuracy if not $O(10^{-4})$



- EMRIs will be seen by LISA at SNRs 20

 100s, few every year!
- Kludge waveforms are available for EMRIs
- Need waveforms from self-force program to:
 - Calibrate *kludge* models, extend to IMRIs
 - Validate models and compare to observed signals
 - Test GR / no-hair theorem: for precision tests, models need to track GW emission to better than O(1) cycle over thousands



5. Summary

- For LISA observations of MBHBs with q ~ O(10):
 - EOB / Phenom are state of art for circular IMR with high-order spin effects. Work to SNRs of 40-50.
- For MBHBs with q ~ O(100):
 - EOB incorporates information from test-particle limit. Best model at present for binaries in quasi-circular orbits. Will need further calibration/validation against NR.
- IMBH + MBH will have (A) higher mass-ratios, & (B) non-negligible residual eccentricity, <u>simultaneously</u>. Need further development.
- LISA can record SNRs ~ $O(10-10^2)$. Need overall better accuracy in all above approaches.
- EMRI and IMRIs need waveforms from self-force program, for calibration and validation of models, especially for precision tests of General Relativity, no-hair theorem, etc. Kludge models may suffice for detection.
- PE computational challenges can be *aided* with reduced-order modeling of expensive source models / reduced-order quadrature rules for Bayesian inferencing. Need development.

Extras

