Garden the Solar System
Green the Galaxy
A Visual Manifesto

By

Howard Bloom
Chairman
The Space Development Steering Committee
Board member and member of the Board of Governors
The National Space Society
Bring space to life
By bringing life to space.
Nature has given us a challenge. How do we get from here to here?
Not to mention here.

An O’Neill colony in a libration point between the Earth and Moon.
How do we bring space to life? Simple. We bring life to space.

(Below—more of an O'Neill colony.)
3.85 billion years ago there was less than half a teaspoon of life. Half a teaspoon threatened with extinction by a toxic planet. How did that half a teaspoon survive? How did it overcome the obstacle of 142 mass extinctions? By turning poisons into pleasures, disasters into delights, and wastelands into fields of waving grain.
Oxygen, sulfur, and phosphorus were deadly. So life invented ways to use them as gears in the machinery of life. Four hundred degree sea vents and an ocean surface whipped by turbulence and bombarded by a form of radiation we call light—life turned those threats to its advantage, too. Life thrived by turning the toxic spaces of an alien planet green.
Biomass thrived by aspiring high. Nearly three billion years after life began, we took an immense gamble. We crawled from a cozy, comfortable place to a barren wasteland higher than any we had ever dared explore, a sterile and hostile rock face with seemingly nothing to offer. We went from the nurturing embrace of the sea to the raw, wind-scoured, sunlight-battered stone of land. A yawning empty space on high. And the move paid off.
Now how do we take life’s next great leap? How do we green the solar system? How do we garden the galaxy? How do we bring the seeds of life to a cosmos of fire, darkness, and stone?

Turning the red planet green—terraforming Mars.
And how do we use space to save the planet? How do we take the resource load off earth? How do we lift the poor and the oppressed of Earth’s seven continents? How do we triple the GHP, the Gross Product of Humanity?

The answer? We are already on our way.
Telstar, the first commercial satellite, started harvesting solar energy in space and transmitting it to earth as communications signals over fifty years ago, in 1962. The squares with black grids were photovoltaic panels turning sunlight into electricity.

Today solar energy harvested in space powers a quarter of a trillion dollar industry—the commercial satellite business.

But that’s getting resources from space to earth. How about getting the gardens of earth to space? That’s life’s ultimate leap. And life’s ultimate challenge. Your ultimate challenge and mine.

Here’s a quick how-to, a sketch of the steps to a cosmos alive with biomass.
SpaceX Heavy, in 2015, will lower cost to orbit from $10,000 per pound to $1,000 per pound...or less.
The next step? Rockets that can lift cargo and passengers to orbit, then can land on their tails, be serviced and refueled in ten hours, and launch another load to space. Space Exploration Technology’s SpaceX Grasshoppers.
SpaceX’s Grasshoppers will compete with piggyback heavy lift vehicles that can take off like airplanes. Grasshoppers and piggybacks will lower cost per pound to orbit to $10 per pound.
The Richard Branson-backed Virgin Galactic spaceports from which the first piggyback horizontal rockets will take off. One spaceport is being built in New Mexico. Another is planned for Abu Dhabi.
What will be the fruits of lowering the cost per pound to orbit from $10,000/lb to $10?
Cutaway view of a Russian hotel in space.
Establishing a foothold on an asteroid.
Deep Space Industries’ asteroid mining.

One asteroid of modest size can have $31 trillion worth of platinum—more than the gross domestic product of the United States, China, Japan, and France combined.
Planetary Resources, a company backed by Google founder Larry Page, Google executive chairman Eric Schmidt, and Titanic filmmaker James Cameron, is also pursuing the asteroid bonanza.
Dutch architect Hans-Jurgen Rombaut’s hotel on the moon.
Shimizu Corporation’s space hotel.

The public area in Shimizu’s space hotel.
Shimizu Corporation’s moon base. Made of moon-dust concrete.
The first tiny twinge of green--gardening on the Moon. But that’s just the start.
Relaxing in Spain’s Galactic Suite Space Resort
LunaCorp’s moon rover looks for the best spot on which to mine water—the raw material for rocket fuel and for the gases that keep humans alive.
Mining the Moon’s minerals. Lunar mines can produce all the materials needed to build space stations, space ships, fuel depots, and entire space colonies. But in lunar extraction industries, humans will be rare. The work will be handled by robots and autonomous vehicles.
Harvesting solar power in space and transmitting it to earth using the same sort of signals received by your cellphone.

Solar panels on your roof have two small problems—clouds and night. Solar panels in the Sahara or the Mohave wipe out desert ecosystems. But solar panels in space are in the sun 24/7, produce no carbon emissions, do not set your tap water on fire, and harvest an energy supply that is endless, renewable, sustainable, and five times as intense as the sun’s energy down on earth.

What’s more, solar power from space is free to all nations without disputes over the possession of islands or seas.

Low-cost access to space and the use of space resources like asteroid metals to build trusses and solar panels will slowly but surely make space solar power cheaper than power from coal or natural gas.
How will we transport space resources like the platinum from asteroids or moon dust? Why transport moon dust at all? It’s the raw material for the glass, concrete, semiconductors, and steel of space colonies. To move these things from lunar mines and mines on asteroids to construction sites, we’ll use space tugs and space trucks. Above is a space truck.
To move entire asteroids, we’ll use space tugs.
Equip an asteroid to move itself using solar energy and ion propulsion, and you turn that asteroid into its own space ship.
A mass driver on the moon—an electromagnetic rail gun that shoots lunar raw or processed materials into space.
A construction site in space that builds space ships and colonies from moon dust and asteroid metals. This construction operation is 40 miles long. And it can handle thousands of tons of materials with ease. Why? No gravity.

Thanks to weightlessness, you can move a hundred tons with a push of your hand. If you can find a stable place to stand.
Two of the first space stations built from recycled space junk, metals smelted and separated from moon dust, plus titanium, nickel, and iron from asteroid mines.
Aldrin Cyclers act as shuttles, using gravitational forces to loop back and forth between the Earth and Mars.
Then there’s the Mars ferry, a cargo carrier that travels between Mars’ surface and Mars orbit and goes back down to the surface again.
The Mars ferry meets up with a truck stop in space. A place where cargo can be offloaded from the ferry and shifted by a robotic arm to a vehicle headed for earth orbit—a vehicle like the Aldrin cycler.

(illustration: Anna Nesterova)
Mars bases.
Exploring Titan, the biggest moon of Saturn, and floating in its methane atmosphere.
Yes, methane, a major fuel down here on Earth. On terra firma we call it “natural gas.”
Colonizing Titan.
Note the heavenly body in the sky.
The space ecosystem, the space infrastructure, the backbone of a space economy, an economy that will increase the gross human product, the GHP, by a factor of three. And an economy that will grow the evolutionary niches for life exponentially.
Robert Zubrin, founder of the Mars Society, a nuclear and aerospace engineer and one of the world's most extraordinary space visionaries, foresees a triangle trade between Earth, the Moon, Mars and the asteroid belt, a trade that could make even the poorest among us wealthy.

The triangle trade starts small.
But it grows.

(Illustrations by Anna Nesterova)
A human-carrying ferry for trips from one hot spot in space to another.
Then will come the colonies hanging in the heavens, micro moons teeming with life. First the little ones, Bernal Spheres with a mere 3,000 humans each.
A Bernal Sphere from the outside. If you look hard at the nested circles on the right, you can make out the green tiers of the farming rings, the agricultural terraces.
A view of the Bernal sphere from a slightly greater distance. The bulging round bulb is where we humans will live. Windows and mirrors will give us sunshine galore.
Bernal Sphere details.
Next will come the really big mothers--the O'Neil Colonies, The Stanford
Toruses, and the huge O’Neill Cylinders. Five hundred square miles or more of farms, forests, parks, puppies, pussycats, sunlight, wildlife, and cities per colony. Imagine the emptiness of space alive with the innovation, industry, and trade of thousands of these mega-cylinders—the black of space hung with communities like a Christmas tree hung with ornaments.
To generate stability, O’Neill Colonies will often be constructed in pairs.
Which colony would you pick for your next home?
Showing off the backyard in your starter home. Nice pool.
Tired of leaves and grass? How about moving to an O’Neill colony modeled on Venice?
A them park in an O'Neill colony.
Previous page—a theme park in an O’Neill colony. Below: A family picnic in the weightlessness at an O’Neill colony’s center.
Or, if you’re up for the heroic, how about settling down to homestead...on the fourth planet from the sun, Mars. Your goal? To bring an entire planet to life.
A base on Mars’ moon Phobos. A base designed as a way station to the Martian surface.
Turning the red planet green.
Terraforming Mars. Giving it an atmosphere like ours. Then gardening the red gravel like crazy. And letting the carpet of plants make the ruddy planet’s temperature friendly.
once upon a time
125 million years ago
a bunch of loony dinosaurs
came up with a weird idea
flying.

if dinosaurs could speak
the conservatives among them would have pooh-poohed the entire notion
don't you get it, the conservatives would have said,
there is nothing up there but empty space

the earth is your mother.
every good thing in your life is here on her breast--
food, shelter, and company. not to mention greenery.
up there there is absolutely, now listen very carefully and look up above
your head.
what do you see?
Absolutely NOTHING.

but a strange thing happened.
the dinosaur conservatives with a love of nature and a deep commitment to
the earth died out 65 million years ago
and the nutty loons who wanted to loop and play in the empty space above
their heads
are called birds
what's more
there are twice as many species of birds
as of us nice, conservative ground-walking mammals.
meaning that the fliers have found twice as many ways of making a living in
the emptiness of the sky.

and fliers
be they birds or flying mammals
live roughly 60% longer than groundlings.

is nature trying to tell us something?
Is there another empty space above our heads waiting for us to ply?
We have gardened one toxic ball of stone—earth. Now it’s time to garden more.

The key to going from here

To here?

Not to mention here?

Life gave you and me a home. Now you and I owe life new lands in which to plant its seed. New spaces in which to roam.
Only one species can answer the call of destiny for the 3.85 billion year old enterprise of biomass. Only one species can take life on the eight-minute leap beyond the gravity well, the leap to orbit and beyond. Homo sapiens. You and me. Are you up for the challenge?

If you are, volunteer to work with The Space Development Steering Committee. Email volunteer@sdsc.org.