Atmospheric Emissions of Carbon Dioxide From Fossil Fuels

some thoughts on the magnitude and distribution of emissions and the uncertainty of emissions estimates

Pasadena, California
March 1, 2010

by Gregg Marland
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
SLIDES AND IDEAS CONTRIBUTED BY

- Bob Andres – ORNL, USA
- T.J. Blasing – ORNL, USA
- Tom Boden – ORNL, USA
- Antoinette Brenkert – PNNL, USA
- Pep Canadell – CSIRO, Australia
- Jay Gregg – Univ. Maryland, USA
- Khrystyna Hamal – Lviv Univ., Ukraine
- Matthias Jonas - IIASA, Austria
- Corinne Le Quéré – Univ. of East Anglia, UK
- Jos Olivier – RIVM, Netherlands
- Glen Peters – CICERO, Norway
Human Perturbation of the Global Carbon Budget

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience
Fossil Fuel Emissions and Cement Production

[1 Pg = 1 Petagram = 1 Billion metric tonnes = 1 Gigatonne = 1x10^{15}g]

Growth rate: 3.4% per year

2008:
Emissions: 8.7 PgC
Growth rate: 2.0%
1990 levels: +41%

2000-2008
Growth rate: 3.4%

Le Quéré et al. 2009, Nature Geoscience; CDIAC 2009
Components of FF Emissions

Le Quéré et al. 2009, Nature Geoscience
Fossil Fuel Emissions: Top Emitters (>4% of Total)

China

USA

Russia

India

Japan

Global Carbon Project 2009; Data: Gregg Marland, CDIAC 2009
Cumulative Fraction of Total FF Emissions 2008

<table>
<thead>
<tr>
<th>Number of Countries</th>
<th>Country</th>
<th>Cumulative Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>China</td>
<td>.232</td>
</tr>
<tr>
<td>2</td>
<td>USA</td>
<td>.419</td>
</tr>
<tr>
<td>3</td>
<td>India</td>
<td>.477</td>
</tr>
<tr>
<td>4</td>
<td>Russia</td>
<td>.530</td>
</tr>
<tr>
<td>5</td>
<td>Japan</td>
<td>.573</td>
</tr>
<tr>
<td>6</td>
<td>Germany</td>
<td>.599</td>
</tr>
<tr>
<td>7</td>
<td>Canada</td>
<td>.617</td>
</tr>
<tr>
<td>8</td>
<td>UK</td>
<td>.633</td>
</tr>
<tr>
<td>9</td>
<td>South Korea</td>
<td>.652</td>
</tr>
<tr>
<td>10</td>
<td>Iran</td>
<td>.668</td>
</tr>
<tr>
<td>20</td>
<td>Poland</td>
<td>.800</td>
</tr>
<tr>
<td>50 (2005)</td>
<td>Belarus</td>
<td>.941</td>
</tr>
<tr>
<td>100 (2005)</td>
<td>Moldova</td>
<td>.992</td>
</tr>
<tr>
<td>210</td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>

- 3 countries (50% Global Emissions)
- 10 countries (2/3 Global Emissions)
- Top 5 + EU (80% Global Emissions)

Gregg Marland, CDIAC 2009
Regional Shift in Emissions Share

Regional Shift in Emissions Share

Regional Shift in Emissions Share

Regional Shift in Emissions Share
Per Capita CO₂ Emissions

Developed countries continue to lead with the highest emission per capita

Le Quéré et al. 2009, Nature Geoscience; CDIAC 2009
Sources of CO$_2$ from FF by sector - 2006

<table>
<thead>
<tr>
<th></th>
<th>USA</th>
<th>China</th>
<th>Germany</th>
<th>Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (Mt C)</td>
<td>1552</td>
<td>1528</td>
<td>224</td>
<td>13</td>
</tr>
<tr>
<td>Utilities (%)</td>
<td>41</td>
<td>49</td>
<td>37</td>
<td>18</td>
</tr>
<tr>
<td>Other energy (%)</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Transport (%)</td>
<td>32</td>
<td>7</td>
<td>19</td>
<td>46</td>
</tr>
<tr>
<td>Industry and construction (%)</td>
<td>11</td>
<td>31</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>Other (%)</td>
<td>10</td>
<td>8</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>(residential)</td>
<td>(5)</td>
<td>(4)</td>
<td>(15)</td>
<td>(2)</td>
</tr>
<tr>
<td>CO$_2$/cap (t C/cap)</td>
<td>5.2</td>
<td>1.2</td>
<td>2.7</td>
<td>1.4</td>
</tr>
<tr>
<td>CO$_2$/GDP (t C/$ PPP)</td>
<td>0.14</td>
<td>0.18</td>
<td>0.10</td>
<td>0.05</td>
</tr>
</tbody>
</table>

(from IEA, 2008)
Sources of US anthropogenic CO$_2$ emissions - 2006

- Fossil fuel combustion 1537.5 Tg C
- Non-energy use of fossil fuels 37.6
- Iron and steel manufacture 13.4
- Cement production 12.5
- Gas flaring/venting/leakage 7.8
- Other industrial processes 22.9

- Total 1631.7

From US EPA, 2008
COUNTRY TOTALS OF CO₂ EMISSIONS FROM FOSSIL FUELS

\[CO₂ = (\text{Fuel Consumed}) (\text{FO}) (C) \]

Fuel Consumed = Primary Production
- Imports (Primary Fuel and Secondary Products)
- Exports (Primary Fuel and Secondary Products)
- Net Change in Storage (Primary Fuel and Secondary Products)
- Secondary Products that will not be oxidized
- Fuel Loadings for International Transport
Carbon Content versus Heating Value

1063 Samples from the Penn State Coal Database

Lignite C Content (dry, %)

125 lignites

Net Heating Value (dry, BTU/lb)

938 coals
Fraction of fossil fuel use - 2000

• Non-fuel uses = 5.8%
• Bunker fuels = 3.2%
China

Russian Federation

EU27 (ex. Malta)

Japan

USA

CO₂ per year (billion tons)

0

1

2

3

4

5

6

7

-1

-2
Figure 1: Domestic fossil and cement emissions averaged 2003-2005, tree vegetation sink, domestic fossil and process emissions, net CO2 responsibility.
Per Capita Emissions

- Winter Gas:
 - 2 - 4
 - 4 - 6
 - 6 - 8
 - 8 - 10
 - 20 - 35

- Winter Petrol:
 - 10 - 20

- Winter Coal:
 - 5 - 10
 - 10 - 20

- Summer Gas:
 - 2 - 4
 - 4 - 6
 - 6 - 8
 - 8 - 10

- Summer Petrol:
 - 5 - 10
 - 10 - 20

- Summer Coal:
 - 5 - 10
 - 10 - 20
Per Capita Emissions (Tonne C/person/yr)

- Petrolium
- Carcoal
- Eter Gas
- Petrolium

2.25 Tg C/mo

Emissions

Per Capita Emissions

2 - 4
6 - 10
4 - 6
10 - 16
Seasonal Cycle of North America C Emissions from Natural Gas, by Latitude
Monthly distribution follows number of days per month:

North America Emissions from Petroleum
Seasonal Cycle of North America C Emissions from Petroleum, by Longitude

Difference in Estimated C Emissions vs. Flat Distribution (%)

West East
Sample Results

Max Difference in Mean Total Monthly Emissions (t C/km²)

- 0 - 0.1
- 0.1 - 0.25
- 0.25 - 0.5
- 0.5 - 1
- 1 - 2.5
- 2.5 - 5
- 5 - 10
- 10 - 25
- 25 - 50
- 50 - 100

North America Map with color gradient representing emissions levels.
Insight into uncertainty of CO$_2$ emissions estimates

• 1 – compare estimates by independent methods
• 2 – compare estimates by different analysts
• 3 – compare estimates by the same analyst over time
Input Data: Emissions Inventories

US Emissions from Fossil Fuel (Gas, Petroleum, Coal) Consumption

- CDIAC
- BP
- EIA
- Blasing State by State
- Blasing US Monthly
Input Data: Emissions Inventories

Canada Annual Emissions from Coal

Coal C Emissions (kt C/year)

Years: 1975 to 2008

BP, StatCAN, CDIAC
CO₂ emissions in millions of metric tons of carbon

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>1990</th>
<th>1998</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>CDIAC 1305</td>
<td>CDIAC 1501</td>
<td>CDIAC 1580</td>
</tr>
<tr>
<td></td>
<td>IEA 1320</td>
<td>IEA 1497</td>
<td>IEA 1545</td>
</tr>
<tr>
<td></td>
<td>USEPA 1316</td>
<td>USEPA 1478</td>
<td>USEPA 1534</td>
</tr>
<tr>
<td>CANADA</td>
<td>CDIAC 112</td>
<td>CDIAC 119</td>
<td>CDIAC 139</td>
</tr>
<tr>
<td></td>
<td>IEA 117</td>
<td>IEA 136</td>
<td>IEA 145</td>
</tr>
<tr>
<td></td>
<td>Canada 117</td>
<td>Canada 133</td>
<td>Canada 144</td>
</tr>
<tr>
<td>MEXICO</td>
<td>CDIAC 99</td>
<td>CDIAC 96</td>
<td>CDIAC 100</td>
</tr>
<tr>
<td></td>
<td>IEA 80</td>
<td>IEA 96</td>
<td>IEA 100</td>
</tr>
<tr>
<td></td>
<td>Mexico 81</td>
<td>Mexico 96</td>
<td>Mexico NA</td>
</tr>
</tbody>
</table>

SOCCR Report, 2007
Correlation of Countries’ Total Emissions as calculated by EDGAR and ORNL

X and Y axes are in logscale in graph

Linear regression: \(\text{EDGAR}(y) = 316 + 0.97 \times \text{ORNL}(x) \)

\(R^2 = 0.99 \)
Figure 2. Country Total Emissions.
<table>
<thead>
<tr>
<th>Table 1. The Average Signed and Average Absolute Differences Relative to the Mean for the Subsets of Individual Power Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>average signed difference, relative to mean (%)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Whole data set</td>
</tr>
<tr>
<td>Nonconventional fuel plants</td>
</tr>
<tr>
<td>Coal-, oil- and gas-fired plants</td>
</tr>
<tr>
<td>Monitoring method (conventional-fuel data set)</td>
</tr>
<tr>
<td>Stack measurements</td>
</tr>
<tr>
<td>Stack or fuel calc (combo)</td>
</tr>
<tr>
<td>Fuel calculations</td>
</tr>
<tr>
<td>CHP plants (conventional-fuel data set)</td>
</tr>
<tr>
<td>CHP plants</td>
</tr>
<tr>
<td>Non-CHP plants</td>
</tr>
<tr>
<td>Fuel calculation subset (conventional-fuel data set)</td>
</tr>
<tr>
<td>All plants in this subset</td>
</tr>
<tr>
<td>CHP plants</td>
</tr>
<tr>
<td>Non-CHP plants</td>
</tr>
</tbody>
</table>

* All values shown are for 2004. o Positive average signed differences indicate that, on average, the eGRID values are larger than the EIA values, and vice versa for negative average signed differences.

Ackerman and Sundquist, 2008
CO$_2$ emissions without LULUCF estimates.
Data from: European Community National Inventory Reports.
EU-15: 1990 emissions estimates relatively to 2004 (in absolute terms)
Revisions of Global Total Emissions

- 1985
- 1990
- 1995
- 2000
- 2005
CO2 from China, revisions

fractional change from initial estimate

- 1986: 1.05
- 1987: 1.1
- 1988: 1.15
- 1989: 1.2
- 1990: 0.95
- 1991: 1
- 1992: 1.05
- 1993: 0.95
- 1994: 1
- 1995: 1.1
- 1996: 1.15
- 1997: 1.2
- 1998: 1.05
- 1999: 1
- 2000: 1.15
- 2001: 1.2
- 2002: 1.3
- 2003: 1.25
- 2004: 1.3
- 2005: 1.25
Revisions of Global Total without China