Classification as a Tool for Understanding Cloud Feedback?

Tom Ackerman
University of Washington

With substantial assistance from
Roger Marchand and Stuart Evans
References

Can we model cloud feedbacks?

- Yes, but …
- Parameterizations continue to be the largest uncertainty in global climate model simulations of climate change
- Scale coupling is a huge problem
- Is the multi-scale modeling framework (MMF; superparameterization) a way to get process physics into a GCM?
 - Could talk about that but will not today
Can we measure cloud feedbacks?

- Maybe, but
- Current knowledge of cloud properties is uncertain because of the difficulty of measuring them, instrument differences, and lack of clarity in definition (cloud fraction?)
- EOS data really helping but data time series are likely to be discontinuous (MISR, MODIS, CloudSat, CALIPSO)
- How do we unscramble transient effects from long-term feedbacks? (regional vs. global; climate variability vs. change)
How about regime sorting?

- Popularized by Bony and DuFrense (2005)
 - Used vertical velocity (1-parameter)
 - Discussed this morning by Chris Bretherton

- Further regime sorting discussed by Joel Norris (2-parameter)
Sensitivity (in W /m² /K) of the tropical (30°S–30°N) NET, SW, and LW CRF to SST changes associated with climate change derived from 15 coupled ocean–atmosphere GCMs. Negative values of w correspond to large-scale ascent and positive values to large-scale subsidence. [From Bony and Dufresne (2005)]
Starting thinking about this some time ago

Motivated by ARM data => Time series statistics of cloud properties measured by ARM at a single site (SGP) are different from statistics predicted by a model

Why?

- Cloud parameterization is wrong
- Dynamical patterns are wrong (parameterization forcing is wrong)
- How can we tell the difference?
Sort atmosphere into dynamical regimes or states using NWP re-analysis fields.

Identify clouds associated with each state using ground-based mm-wavelength radar (composite profiles).

Sort model fields into same state and compare composite cloud profiles (use radar simulator).

So what happens when we try this at ARM Southern Great Plains (Oklahoma) site?
Need a tool!

- Cluster analysis / pattern recognition
Aggregate observations based on a classification of the large-scale atmospheric state

- NWP Analysis (p, T, u, v, w, RH)
- Self-Organizing Neural Network Classifier
- Atmospheric State #
- Aggregate Data
Neural Network Classification Scheme

Training data

Neural Network / Clustering Algorithm

Year to Year Stability Test

Are all states stable?

YES

Are all states distinct?

YES

Done.

NO

Identify (up to) four least stable states.

NO

Identify (up to) four least distinct states.

YES

Reassign training data to current set of state definitions

For each of these 4 states:
Divide large states (those with more than 6% of input vectors) into 2 new states via clustering (of only those points in the state to be divided).
Remove small states.
Each atmospheric state is defined by a set of meteorological fields.

This particular state (state #1) features a front with surface easterlies over much of the domain (including at the ARM site), strong low pressure at the surface in the southwestern part of the domain, and very moist southwesterly flow at 500 and 375 hPa.

The observed cloud occurrence profiles show large fractional coverage from near the surface to about 9 km, suggesting deep ascending air.
1999 blue
2001 red

in () at top gives fraction of states in that category

\[p = \text{global similarity hypothesis test;} \]
\[< 0.05 \implies \text{Difference between profiles IS significant at 95\% level} \]
\[> 0.05 \implies \text{Difference between profiles IS NOT significant at 95\% level} \]

Thin line \(\implies\) levels where we have enough data to make comparisons

* \(\implies\) levels where profiles do NOT appear to be different
Aggregate observations and model output based on a classification of the large-scale atmospheric state.

NWP Analysis (p, T, u, v, w, RH) → Self-Organizing Neural Network Classifier → State Definitions

GCM output (p, T, u, v, w, RH) → Classifier → Atmospheric State #

Atmospheric State # → Aggregate Data & Compare → Atmospheric State #
Multiscale Modeling Framework (MMF)

MMF Simulations:

- **Control**
 - 4 km horizontal
 - 64 columns
 - 26 vertical layers

- **Test A**
 - 1 km horizontal
 - 64 & 128 columns
 - 26 vertical layers

- **Test B**
 - 1 km horizontal
 - 64 columns
 - 52 vertical layers

Run on PNNL MPP2 and SDSC Datastar with support from CMMAP.
Blue = ARM (RUC)
Red = MMF
Radar cut = -40 dBz
Blue = ARM (RUC)
Red = MMF
Radar cut = -25 dBz
FIG. 6. Depiction of the annual cycle of states for the (a) RUC model and (b) MMF. (c) Difference, RUC – MMF. The frequency of occurrence is normalized to 1 for each month (i.e., each column).
Conclusions of SGP study

- Scheme works!
- Can now identify by regime and cloud level where model is doing well and where not
- Need more data to increase significance
- Potential next step is to figure out why model is performing poorly for certain regimes and try to improve embedded CRM physics
Can we export to another locale?

- Try same scheme for TWP Darwin site

Use “data” from ECMWF re-analysis from 2006-2008.
- 8x daily
- Half degree resolution, sampled on a 9x9 grid at 2 x 2.5
- 7 vertical levels (1000, 875, 750, 625, 600, 375, 250)
- Temperature, relative humidity, zonal and meridional wind, and surface pressure
Monthly histogram of occurrences of each state.
Titles indicate total number of instances of each state.
State by state cloud occurrence profiles. Altitude (km) vs. fractional occurrence. Title for each subplot indicates number of instances of each state. Data from the vertically pointed millimeter radar at the ARM site in Darwin, with a -40dBz minimum reflectivity threshold applied.
State 1: Monsoon

Upper Left: Surface dew point (C) and winds

Upper Right: Surface temp (C), and winds

Middle Left: Surface pressure anomaly (hPa) and 500 hPa winds

Middle Right: 875 hPa Temp (C) and winds

Lower Left: 500 hPa RH and winds

Lower Right: 375 hPa RH and winds
State 3: Dry season

Upper Left: Surface dew point (C) and winds

Upper Right: Surface temp (C), and winds

Middle Left: Surface pressure anomaly (hPa) and 500 hPa winds

Middle Right: 875 hPa Temp (C) and winds

Lower Left: 500 hPa RH and winds

Lower Right: 375 hPa RH and winds
Too early to tell

Some parts are promising but we aren’t getting a lot of state discrimination
 - Take larger area?
 - Use other parameters like MJO index?

Talk to us in 6 to 12 months …
Cloud properties for current climate and model climate given by

\[\text{Sum } \{ f(S_i) \times CP(S_i) \} \]

\[f(S_i) = \text{normalized probability of state } i \]

\[CP(S_i) = \text{cloud property of state } i \text{ (remember this is a distribution itself!)} \]

Let’s assume that CP(Si) are in good agreement for observations and model for all Si (or almost all)
Now perturb model (increase CO2, etc.)
Sort model into states: \(f_p(S_i) \) [different from \(f(S_i) \)]

Implications:
- Climate change can be reduced to identifying changes in state frequencies
- Cloud changes can be computed from
 \[
 \text{Sum}\{ [f_p(S_i) - f(S_i)] \times CP(i) \}
 \]
- Cloud feedbacks can be related to these changes
- Feedback of different cloud types can be related to frequency of changes of states associated with those clouds

So what about cloud feedbacks?
Now the sticky parts ...

- Can we do this on a global scale?
 - Break world into regions, but how big? how many?
 - Are CloudSat data spatially adequate?
- Can identify cloud property changes but how do we separate cloud feedback from system changes?
 - Why did the state frequency change?
- Are our state definitions robust?
 - Does climate change produce “new” atmospheric states? (may require a more rigorous definition of state)