Water vapor and the transition to strong convection

J. David Neelin1,2,
Katrina Hales1, Ole Peters1,5, Ben Lintner1,2,7,
Baijun Tian1,4, Chris Holloway3, Rich Neale10, Qinbin Li1,
Li Zhang1, Sam Stechmann6, Prabir Patra8, Mous Chahine9

1Dept. of Atmospheric Sciences & 2Inst. of Geophysics and Planetary Physics, UCLA
3University of Reading
4Joint Institute for Regional Earth System Science and Engineering, UCLA
5Imperial College, Grantham Inst.
6Dept. Of Mathematics, UCLA
7Dept. of Environmental Sciences, Rutgers
8Frontier Research Center for Global Change, Japan
9Jet Propulsion Laboratory
10National Center for Atmospheric Research
• Issues with precip. simulation, esp. at regional scales, tropics: global warming, El Niño..., Sensitivity to convective schemes
e.g., IPCC 2001, 2007; Trenberth et al 2003; Maloney and Hartmann 2001; Joseph and Nigam 2006; Biasutti et al. 2006; Dai 2006; Tost et al. 2006; Neelin et al 2007; Bretherton 2007...

1. Sensitivity of convective margin zones

2. Characterizing transition to deep convection
 - dependence on temperature and water vapor
 - remote sensing statistics and buoyancy calculations from vertical structure

3. Long tails in distributions of column tracers
Issues with precipitation simulation, especially at regional scales, tropics: global warming, El Niño…

- Sensitivity to convective schemes, interaction with large-scale
- [although some agreement on large-scale or amplitude]

4 mm/day model climatology black contour for reference

e.g., IPCC 2001, 2007; Trenberth et al 2003; Maloney and Hartmann 2001; Joseph and Nigam 2006; Biasutti et al. 2006; Dai 2006; Tost et al. 2006; Neelin et al 2006; Bretherton 2007...
1. Sensitivity at convective margin
Prototype model*: dry advection into a precipitating region

Precipitation (green) and moisture (contours) would be constant except for trade wind inflow

- Temp. & moisture equations, specified wind + Gaussian variations;
- Analytic solutions for interplay with local thermodynamics and convective threshold

Lintner & Neelin 2008, GRL
Prototype model: change in threshold for convection

Precipitation (green) and moisture (contours)

Substantial impact of a poorly constrained aspect of convective schemes

Lintner & Neelin 2008, GRL
South Pacific Convergence Zone (SPCZ) composites: SSMI precip, column water vapor on wind variations

Daily SSMI

Composites on u925 mb avgd 140°W-120°W, 20°S-10°S.

4 mm day$^{-1}$ (weaker trades/less low-level dry air inflow)

4 mm day$^{-1}$ (stronger trades/more low-level dry air inflow)

Lintner & Neelin (2008)
Precip. composite on local inflow wind anomaly

Inflow wind $v_{\nabla P}$ across gradient of mean precipitation

Atmospheric boundary layer (ABL) wind

Large sensitivity at margin

Ratio to composite on precipitation

Locally, monthly composite precipitation differences associated with inflow represent 80-90% of total composite-differenced precipitation

Lintner & Neelin (2009, subm)
2. Transition to strong convection

- **Convective quasi-equilibrium assumptions**: Above onset threshold, convection/precip. increase keeps system close to onset. Arakawa & Schubert 1974; Betts & Miller 1986; Moorthi & Suarez 1992; Randall & Pan 1993; Zhang & McFarlane 1995; Emanuel 1993; Emanuel et al 1994; Bretherton et al. 2004; …

- **Pick up a function of buoyancy-related fields** – temperature T & moisture (here column integrated moisture w)

- **Elsewhere**: Onset of strong convection conforms to list of properties for continuous phase transition with critical phenomena (Peters & Neelin 2006, Nature Physics); mesoscale implications (Peters, Neelin & Nesbitt 2009, JAS)

- **Stochastic convective schemes** (and old-fashioned schemes too) need to better characterize the transition to deep convection
Precip. dependence on tropospheric temperature & column water vapor from TMI*

• Averages conditioned on vert. avg. temp. \hat{T}, as well as w (T 200-1000mb from ERA40 reanalysis)

• Power law fits above critical:

 $P(w) = a(w-w_c)^\beta$

 w_c changes, same β

• [note more data points at 270, 271]

* TMI: Tropical Rainfall Measuring Mission Microwave Imager (Hilburn and Wentz 2008), 20N-20S

Neelin, Peters & Hales, 2009, JAS
Collapsed statistics for observed precipitation

- Precip. mean & variance dependence on w normalized by critical value w_c; occurrence probability for precipitating points (for 4 T values); Event size distribution at Nauru
Example from Manna (1991) lattice model
(hopping particles—not a model of convection! 20x20 grid shown)

• Activity (order parameter) & variance dependence on particle density (tuning parameter) [conserving case]
• Occurrence probability (log scale; very Gaussian) & event size distribution [self organizing case]
Critical point dependence on temperature

- Find critical water vapor w_c for each vert. avg. temp. \hat{T}
- Compare to vert. int. saturation vapor value binned by same \hat{T}
- *Not* e.g., a constant fraction of column saturation
- Lower tropospheric saturation $q_{\text{sat}}(T)$ binning gives same results

Neelin, Peters & Hales, 2009, JAS
Saturation value $q_{\text{sat}}(T)$ by level

- Saturation mixing ratio by level binned by vert. avg. temp. \hat{T}
- Compare to critical value & vert. int. saturation value vs. \hat{T}
- Appears consistent with substantial control by lower free troposphere proximity to saturation
Check pick-up with radar precip data

- TRMM radar data for precipitation
- 4 Regions collapse again with w_c scaling
- Power law fit above critical even has roughly same exponent as from TMI microwave rain estimate
 - (2A25 product, averaged to the TMI water vapor grid)

Peters, Neelin & Nesbitt, JAS, 2009
Entraining convective available potential energy and precipitation binned by column water vapor, w

- buoyancy & precip. pickup at high w
- boundary layer and lower free tropospheric moisture contribute comparably*
- consistent with importance of lower free tropospheric moisture (Austin 1948; Yoneyama and Fujitani 1995; Wei et al. 1998; Raymond et al. 1998; Sherwood 1999; Parsons et al. 2000; Raymond 2000; Tompkins 2001; Redelsperger et al. 2002; Derbyshire et al. 2004; Sobel et al. 2004; Tian et al. 2006)

*Brown & Zhang 1997 entrainment; scheme and microphysics affect onset value, though not ordering.
Holloway & Neelin, *JAS*, 2009
Binning \(q \), precip. on vert. int. water vapor

Spec. humidity, \(q \)
Precip.

Binned by: Column water vapor

850-200 mb

Surface-950mb

[Note fewer soundings in high bins]

Nauru ARM site observations

Holloway & Neelin, JAS, 2009
Lifted parcel buoyancy by column water vapor bins

No mixing

Const. mixing (Brown & Zhang 1997)

Const. mixing, with \(q \) in free troposphere constant

Const. mixing, only \(q \) in free troposphere changes

- Highest column water vapor bins most buoyant
- Both boundary layer and lower free troposphere contribute
Lifted parcel buoyancy by column water vapor bins

- Deep inflow mixing A
- Deep inflow mixing B
- Deep inflow mixing A with instant freezing (reversible)
- Deep inflow mixing B with instant freezing (reversible)

- Highest few column water vapor bins deep convective microphysics between these cases; large potential impact
Prec & column water vapor: autocorrelations in time

- Long autocorrelation times for vertically integrated moisture (once lofted, it floats around)
- Nauru ARM site upward looking radiometer + optical gauge

Precip conditioned on lag/lead column water vapor

- High water vapor several hours ahead still useful for pickup in precipitation
- Consistent with high water vapor \Rightarrow favorable environment, but stochastic plume
- Nauru ARM site upward looking radiometer + optical gauge

Holloway & Neelin JAS subm.
How do models do? CAM3.5 (0.5 degree run) *
Precip. dependence on tropospheric temperature & column water vapor

• Averages conditioned on vert. avg. temp. T, as well as column water vapor w
• Linear fits above critical (motivated by parameterizn)
$P(w)=a(w-w_c)^\beta$
as obs. but $\beta=1$: to estimate w_c

*Runs, data R. Neale, analysis K. Hales
Critical point dependence on temperature

CAM3.5 preliminary comparison

- Critical water vapor w_c for each vert. avg. temp. \hat{T}
- Compare to vert. int. saturation vapor value binned by same \hat{T}
- Suggests suitable entraining plumes can capture T dependence
Obs. Freq. of occurrence of w/w_c (precipitating pts)

Eastern Pacific for various tropospheric temperatures

- Peak just below critical pt. \Rightarrow self-organization toward w_c
- But exponential tail above critical pt. \Rightarrow more large events

- with Gaussian core, akin to forced tracer advection-diffusion problems
 (e.g. Shraiman & Siggia 1994, Pierrehumbert 2000, Bourlioux & Majda 2002)
Precipitating freq. of occurrence vs. w/w_c
Eastern Pacific for various tropospheric temperatures
- CAM3.5 preliminary comparison
- Includes super-Gaussian ~exponential range above critical pt.
Summary

• These statistics for precipitation and buoyancy related variables at short time scales provide new ways to quantify the transition to tropical deep convection as needed for models

• Tracer distributions consistent with simple prototypes; core with stretched exponential tails ubiquitous

 Current retrievals are great but could sure use
• vertical dependence on temperature and water vapor in deep convective regions, land,…
• Coordinated observations of condensate loading, freezing
• huge number of observations allow statistics to the computed consistently through range with large events

• Multiple tracers promising