Searching for Dark Matter Annihilation in Dwarf Spheroidal Galaxies with Fermi

Tesla Jeltema
UC Santa Cruz
on behalf of the Fermi LAT Collaboration
Outline

- The Fermi Gamma-Ray Space Telescope
- Gamma rays from dark matter annihilation
 - Fermi searches
- Dwarf spheroidal galaxies
 - targets and density profiles
- Fermi-LAT preliminary 9 month results
 - flux upper limits
 - DM annihilation cross-section upper limits
 - comparison to clusters of galaxies
Fermi Gamma-Ray Space Telescope

- Launched June 11, 2008

- Fermi-LAT began all-sky gamma-ray survey August 2008
 - 20 MeV to > 300 GeV
 - more 10x EGRET sensitivity

- Broad science:
 AGN, GRBs, Pulsars, SNRs, galactic and extragalactic diffuse emission, EBL, cosmic rays, indirect dark matter searches

Tesla Jeltema for the Fermi LAT Collaboration
Fermi-LAT 3 Month Sky Map

206 bright sources (detected > 10 \(\sigma\)) in the 3 month catalog, 2/3 at |b| > 10 degrees
Gamma rays from WIMP annihilation

Secondary from π_0 decays

Prompt lepton pair production

\[\Phi_{\text{WIMP}}(E, \Psi) = J(\Psi) \times \Phi^{PP}(E) \]

Astrophysical factor

\[J(\Psi) = \int_{\text{l.o.s.}} dl(\Psi) \rho^2(l) \]

Particle physics factor

\[\Phi^{PP}(E) = \frac{1}{2} \frac{\langle \sigma v \rangle}{m_{\text{WIMP}}^2} \sum_f \frac{dN_f}{dE} B_f \]
Gamma-ray Spectrum from WIMP annihilation

Gamma-ray yield for a 200 GeV WIMP
• cutoff at WIMP mass
• some final states give similar spectra

DM density distribution
annihilation cross-section

particle mass
final state

Tesla Jeltema for the Fermi LAT Collaboration
Fermi Dark Matter Searches

<table>
<thead>
<tr>
<th>Search Technique</th>
<th>advantages</th>
<th>challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galactic center</td>
<td>Good Statistics</td>
<td>Source confusion/Diffuse background</td>
</tr>
<tr>
<td>Satellites, Subhalos</td>
<td>Low background, Good source id</td>
<td>Low statistics</td>
</tr>
<tr>
<td>Milky Way halo</td>
<td>Large statistics</td>
<td>Galactic diffuse background</td>
</tr>
<tr>
<td>Extragalactic</td>
<td>Large Statistics</td>
<td>Astrophysics, galactic diffuse background</td>
</tr>
<tr>
<td>Spectral lines</td>
<td>No astrophysical uncertainties, good source id</td>
<td>Low statistics</td>
</tr>
<tr>
<td>Clusters of Galaxies</td>
<td>Low background, Good source id</td>
<td>Low statistics</td>
</tr>
</tbody>
</table>

E.A. Baltz et al. JCAP07 (2008) 013

Tesla Jeltema for the Fermi LAT Collaboration
Dwarf Spherodial Galaxies: Promising Targets for DM Signal

Milky Way dwarf spheroidals are:

- nearby
- very dark matter dominated (M/L ~ 10 – 2000)
- most are expected to be free of other astrophysical gamma-ray sources
- SDSS searches have doubled the number of known dwarfs
Choose ten best candidate, high latitude dSph galaxies
distance < 150 kpc
-30 > b > 30 degrees
Dark Matter Density Profiles

Astrophysical factor based on modeling of stellar kinematic data assuming NFW profile (e.g. Strigari et al. 2007, Geha et al. 2009)

<table>
<thead>
<tr>
<th>Name</th>
<th>ρ_s $(M_\odot \text{pc}^{-3})$</th>
<th>r_s (kpc)</th>
<th>J^{NFW} $(10^{19} \text{GeV}^2 \text{cm}^{-5})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segue 1</td>
<td>1.65</td>
<td>0.05</td>
<td>0.97</td>
</tr>
<tr>
<td>Ursa Major II</td>
<td>0.17</td>
<td>0.25</td>
<td>0.57</td>
</tr>
<tr>
<td>Segue 2</td>
<td>0.61</td>
<td>0.06</td>
<td>0.1</td>
</tr>
<tr>
<td>Willman 1</td>
<td>0.417</td>
<td>0.17</td>
<td>0.84</td>
</tr>
<tr>
<td>Coma Berenices</td>
<td>0.232</td>
<td>0.22</td>
<td>0.42</td>
</tr>
<tr>
<td>Usra Minor</td>
<td>0.04</td>
<td>0.97</td>
<td>0.35</td>
</tr>
<tr>
<td>Sculptor</td>
<td>0.063</td>
<td>0.52</td>
<td>0.12</td>
</tr>
<tr>
<td>Draco</td>
<td>0.13</td>
<td>0.50</td>
<td>0.43</td>
</tr>
<tr>
<td>Sextans</td>
<td>0.079</td>
<td>0.36</td>
<td>0.05</td>
</tr>
<tr>
<td>Fornax</td>
<td>0.04</td>
<td>1.00</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Considering Fermi PSF, can approximate dwarfs as point sources (dwarf $r_s = 0.1$-0.8° compared to 68% PSF ~ 5° at 100 MeV and 0.75° at 1 GeV)

Tesla Jeltema for the Fermi LAT Collaboration
Fermi-LAT Data Analysis

- 9 months of data
 - cuts to remove particle background and Earth’s albedo
 - energy range 100 MeV to 50 GeV
 - 10 degree radius
 - binned analysis

- Backgrounds:
 - model galactic and isotropic diffuse
 - include point sources from 9 month catalog

first-year paper coming soon
Unfortunately, no dwarf spheroidal galaxies detected so far.

Example raw count map > 1 GeV

Example smoothed count map > 1 GeV

5°x5° centered on Segue 1

5°x5° centered on Willman 1

Tesla Jeltema for the Fermi LAT Collaboration
Fermi-LAT Flux Upper Limits

Flux upper limits assuming a point-like source at the dwarf location

Using DMFIT package, Jeltema & Profumo 2008

Tesla Jeltema for the Fermi LAT Collaboration
Annihilation Cross-Section Limits

- Use 95% confidence upper limits on > 100 MeV flux
- Assume a $\bar{b}b$ final state

Beginning to constrain some thermally produced WIMP models with the right relic density (NFW, no substructure).

Tesla Jeltema for the Fermi LAT Collaboration
Annihilation Cross-Section Limits

- Same for $\mu^+\mu^-$ final state
- Limits considering only final state radiation

![Graph showing annihilation cross-section limits vs. WIMP mass](image-url)
We expect significant IC gamma-ray emission for high mass WIMP models annihilating to leptonic final states.

The IC flux depends strongly on the uncertain/unknown diffusion of cosmic rays in dwarfs.

We assume a simple diffusion model similar to what is found for the Milky Way

\[D(E) = D_0 E^{1/3} \text{ with } D_0 = 10^{28} \text{ cm}^2/\text{s} \]

(only galaxy with measurements, scaling to dwarfs??)
Inverse Compton Contribution

IC emission can dominate for leptonic final states at $m > 300$ GeV.

Draco: variation in diffusion coeff. 10^{28} vs. 10^{29}

Segue 1: diffusion more significant in small dwarfs
Constraints Including IC Emission

Combined constraints for FSR plus IC with reference diffusion model ($D_0 = 10^{28}$ cm2/s).

![Graph showing constraints for FSR plus IC with reference diffusion model. The graph includes lines for different regions such as Segue I, U Major II, Segue II, Willman I, Coma B., U Minor, Sculptor, Sextans, and Fornax. Notably, the Draco region is highlighted with $D=10^{28}$ cm2/s and $D=10^{29}$ cm2/s. The graph also shows the Fermi best-fit region and a preliminary prediction for the $\mu^+\mu^-$ final state, with IC.]

Tesla Jeltema for the Fermi LAT Collaboration
Comparison to Cluster of Galaxies

- Large DM densities and low backgrounds, similar to dwarfs
 (see Jeltema et al. 2009, Pinzke et al. 2009)

- Not detected in 9 months of data
 (see Keith Bechtol’s talk at TeV PA)

- Diffusion of e^+e^- is not expected to be significant,
 reducing the model dependence of the predicted IC emission.
Comparison to Cluster of Galaxies

Constraints for combined FSR + IC

Muon-Antimuon final state

Ruled out by Fermi-LAT Gamma-Ray Limit

Preliminary

Fornax and Coma clusters: NFW, no substructure

50% of mass in substructure

Beginning to constrain some models for Pamela e^+ excess.

Tesla Jeltema for the Fermi LAT Collaboration
Conclusions

- Fermi-LAT provides a new window for indirect searches for dark matter.

- No dSph galaxies detected in 9 months of data.

- Flux upper limits are beginning to constrain some thermally produced WIMP models with the right relic density (NFW, no substructure).

- Fermi observations of clusters and dwarfs (diffusion dependent) are beginning to probe DM models fitting the Fermi and Pamela e⁺e⁻ data.
IDM 2010
8th International Workshop on Identification of Dark Matter
http://www.lpta.univ-montp2.fr/idm2010

26-30 July 2010
Université Montpellier 2
Montpellier, France

Dark matter candidates
Dark matter direct searches
Dark matter indirect searches
Connections with accelerator searches
Halo models and structure formation
Gravitational lensing
Neutrino physics
Cosmology and dark energy

Local Organizing Committee (Université Montpellier 2)
M. Capdequi-Peyranère
J. Cohen-Tanugi
K. Jedamzik
G. Moultaka
E. Nuss

Tech/Admin. support
F. Amat
M. Compain
N. Clémentin
M. Delpont
S. Colaiocco