Planck systematics

Matthieu TRISTRAM
CNRS

KISS “Designing future CMB experiments”
March 2018
Polarisation measurement

- we need different angles to measure I,Q,U
 \[m_t = I(\vec{n}) + \rho [Q(\vec{n}) \cdot \cos(2\psi) + U(\vec{n}) \cdot \sin(2\psi)] \]

- Planck scanning strategy is such that we have
 - one orientation of the focal plane / sky pixel / survey
 - 2 pairs of identical surveys
 - 10 to 12 detectors per frequency

- pair- and time-differencing
 - we combine detectors at 90deg at different time of observation
 - need to have very precise inter-calibration to avoid I,Q,U mixing
 - Intensity signal is \(\sim 100\) to 1000 times larger than polarisation
PLANCK time-domain systematics

- **detector time response (very long time constants)**
 - seen at map level but not on Jupiter nor glitches
 - use empirical model
 - impact glitch removal

- **ADC non linearity**

- **4K cooler pick-up**
 - electromagnetic and microphonic interference from the 4K-cooler reaches the readout boxes and wires in the warm service module of the spacecraft and appears in the Planck data as a set of very narrow lines at multiples of 10Hz and at 17Hz
 - correlated with ADC non-linearity
Time response deconvolution
Jupiter crossing

Before deconvolution

After deconvolution

Time response function is modeled in Fourier space as a sum of 5-8 lowpass filters time constants vary from 1ms - 1.5s +electronics transfer function

\[F(\omega) = \sum_{i=1,5} \frac{a_i}{1 + i\omega \tau_i}. \]
before projection of several detectors on maps, need to remove

- instrumental systematic effects
 - 1/f noise
 - ADC non-linearity corrections
 - gain coefficients (absolute and possibly time-dependent)
 - time constant residuals

- sky signal not constant in time
 - zodiacal light
 - orbital dipole (reference for calibration)
 - Far SideLobes

- sky signal not common to all detectors within a channel
 - foreground emissions mismatch due to different bandpass
 - Far SideLobes
we include templates of systematics in the map-making

\[d_t = g \left(A S + \sum_i \Gamma^{(i)} T^{(i)} \right) + n_t \]

\[= g [A, \Gamma] \begin{bmatrix} S \\ T \end{bmatrix} + n_t \]

different domains:
- time domain \((t) \) / ring domain \((r) \) / pixel domain \((p) \)

In practice:

\[d_t = g_r \left(I_p + \rho Q_p \cos 2\phi_t + \rho U_p \sin 2\phi_t + D_t + \sum f_i T_p^{(fg)} i + \sum c_i T_t^{(TF)} i \right) + \sigma_r + n_t \]

\(g \) gains non-linear system \(\rightarrow \) gain linearization
\(I, Q, U \) sky signal
\(f \) bandpass mismatch coefficients
\(c \) transfer function residual coefficients
\(o \) 1/f offsets
PLANKK polarization systematics at low-ℓ

- **Instrumental systematics**
 - 1/f noise residuals
 - glitches (increase the 1/f)
 - inter-calibration leakage
 - time-constant residuals
 - ADC non-linearity residuals

- **Foreground systematics**
 - cleaning residuals

- **Need for simulations !**

- **PLANCK 100 E2E simulations**
 - no bias on 100x143
 - error budget extended by a factor 1.5 due to systematics uncertainties

![Graph showing C_\ell for noise, systematics, cosmic variance, and total uncertainty.](image)

Those residuals are in $\ell^{-\alpha}$ but not directly correlated between frequencies.
From CMB data:

1. **WMAP 9yr**
 - $\tau = 0.089 \pm 0.014$

2. **Planck 2013**
 - $\tau = 0.089 \pm 0.014$ (TT with WMAP Polar)
 - $\tau = 0.075 \pm 0.013$ (TT with WP&Planck dust)

3. **Planck 2015**
 - $\tau = 0.078 \pm 0.019$ (TT + lowP)
 - $\tau = 0.066 \pm 0.016$ (TT + lowP + lensing)
 - $\tau = 0.067 \pm 0.016$ (TT + lensing + BAO)

4. **Planck HFI EE low-ℓ**
 - $\tau = 0.058 \pm 0.012$ (TT + lowHFI)
 (lollipop)

$\tau = 0.058 \pm 0.012 \pm 0.009$ (stat)
± 0.003 (sys)
PLANK major systematics at high-\(\ell\)

- **Instrumental systematics**
 - beam leakage due to beam mismatch
 - calibration uncertainty
 - cosmic rays inducing correlated noise

- **Foregrounds systematics**
 - impact of free parameters in likelihood
 - impact of the choice of the foreground modeling

- **Need for simulations !**
 - hard to perform because lack of knowledge on the physical processes of the foregrounds
 - PLANCK made extensive use of jack-knives
 - comparison with different foreground modelings or different data set (TE)
• Hillipop TE results **compatible** in mean and accuracy with TT

• PLANCK TE spectra are much **less affected** by foregrounds (only dust matters)

[Coludot et al. A&A 602 A41 (2017)]
Cosmology with the CMB (& systematics)

- **major Planck systematic residuals**
 - ADC non-linearity (affecting inter-calibration and inducing E-B leakage)
 - residual long-time constant
 - unidentified cross-correlation noise affecting TE auto-power spectra

- **the major consequence is that systematics are becoming no longer negligible in the error budget**
 - as a consequence, we need massive Monte Carlo to
 - check for biases
 - propagate properly the uncertainties
 - this has been underestimated in PLANCK

- **This is difficult**
 - because of the lack of current knowledge on the Galactic emissions (emission law with frequency are not measured with enough accuracy and difficult to simulate)
 - massive amount of data available

- **This can make some differences especially for extension on ΛCDM models**