Earth and Planetary surfaces
observation from optical methods

Jean-Philippe Avouac
California Institute of Technology
Dynamic modeling of the seismic cycle

Modeling the Parkfield EQ Sequence on the SAF

Rate Strengthening Rate Weakening
(Barbot et al., 2012)
Optical Remote Sensing

Passive

Active

swath

swath
<table>
<thead>
<tr>
<th>Satellite</th>
<th>Spatial Resolution</th>
<th>Swath</th>
<th>Bands</th>
<th>Best Repeat Time</th>
<th>Stereo Capable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landsat 8</td>
<td>15 – 100 m</td>
<td>185 km</td>
<td>Pan + 10 MS</td>
<td>16 days</td>
<td>No</td>
</tr>
<tr>
<td>SPOT 5</td>
<td>2.5 - 20m</td>
<td>60 km</td>
<td>Pan + 4 MS</td>
<td>3 days</td>
<td>No</td>
</tr>
<tr>
<td>SPOT 6 & 7</td>
<td>1.5 – 6 m</td>
<td>60 km</td>
<td>Pan + 4 MS</td>
<td>3 days</td>
<td>Yes</td>
</tr>
<tr>
<td>Worldview 1</td>
<td>0.5 m</td>
<td>17.6 km</td>
<td>Pan</td>
<td>1-6 days</td>
<td>Yes</td>
</tr>
<tr>
<td>Worldview 2</td>
<td>0.46 – 1.84m</td>
<td>16.4 km</td>
<td>Pan + 8 MS</td>
<td>1-6 days</td>
<td>Yes</td>
</tr>
<tr>
<td>Worldview 3</td>
<td>0.31 – 3.7m</td>
<td>13.1 km</td>
<td>Pan + 16 MS</td>
<td>1 day</td>
<td>Yes</td>
</tr>
<tr>
<td>Pleiades 1A & 1B</td>
<td>0.7 - 2.8m</td>
<td>20 km</td>
<td>Pan + 4 MS</td>
<td>3 days</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Earth Observation from Space
Optical Systems
- Some milestones -

- Landsat-1 to 7 (1970s): 30m GSD, 180km, nadir.
- SPOT1-4 (1980s): 10m GSD, 60km, steering.
- ASTER (2000): 15m, 60km, stereo.
- High Resolution Commercial systems (2000s): Quickbird, Ikonos, Worldview....
- Landsat-8 (2013): 15m GSD, 180km, nadir, global coverage, 16 days repeat time.
The Altyn Tagh Fault (Karakax Valley)

SPOT image (copyright CNES-1988)- Gilles Peltzer
(Tapponnier and Molnar, 1975)
Offset terrace risers
Offset terrace risers

155m
The Kunlun Fault
11.5 ± 2.0 mm/yr

(van der Woerd et al., 2000)
High Resolution Imagery

(Klinger et al, 2010)
The 3d Dimension
Reconstructed topography after restoration of vertical displacements

Current topography

(De Chabalier and Avouac, 1995)
Reconstructed topography after restoration of vertical displacements and horizontal stretching

(De Chabalier and Avouac, 1995)
The 3d Dimension

LiDAR, unstripped vegetation,

(Zielke et al, BSSA, 2012)
Image Geodesy
Sub-Pixel Correlation

Co-registration of **Optically Sensed Images and Correlation**

Sébastien Leprince, Francois Ayoub, B. Conejo, Jiao Lin,

1. **Satellite imagery** acquired at different times, any resolution, possibly by different sensors

2. **Automatic registration** with accuracy of 1/10 of the pixel size (sub-pixel)

3. **Automatic comparison** of images to measure motion

4. **Ground deformation**

 ![Diagram of vector field](http://www.tectonics.caltech.edu/slip_history/spot_coseis/)

(Leprince et al., IEEE TGRS, 2007)
Inputs:
- Raw images
- Orbits, platform attitudes, camera model
- Digital Elevation Model

Orthorectification:
Images must superimpose accurately

Correlation:

Sub-pixel Correlation

Outputs:
- N/S offset field
- E/W offset field
- SNR

Displacement in rows and columns provide the E/W and N/S components of the ground deformation

The Signal to Noise Ratio assesses the measure quality.

(Leprince et al, 2007)
Solving for 3-D displacements and the topography with 4 images.
The Mw7.1 Hectore Mine Earthquake

(Sebastien Leprince)
The 2010, Cucapah El-Mayor EQ

Pre-earthquake images:

- Quickbird 09/21/2006,
 Along-track angle -1.23°
 Across-track angle -9.8°

- Worldview 09/16/2008,
 Along-track angle -10.8°
 Across-track angle 13.5°

Post-earthquake images:

- Worldview 04/10/2011,
 Along-track angle -13.8°
 Across-track angle -22.5°

- Worldview 05/19/2011,
 Along-track angle 14.1°
 Across-track angle 21.6°

(Sebastien Leprince)
The 2010, Cucapah El-Mayor EQ

Profile 1
Profile 2
Profile 3

Measurement accuracy better than 10 cm (Sebastien Leprince)
The 2010, Cucapah El-Mayor EQ

Eastward ground motion

Northward ground motion

Vertical ground motion

(Sebastien Leprince)
The Sept, 24, 2013, Mw7.7 Balochistan Earthquake

Surface displacements measured from correlating 2 Landsat-8 images

(Francois Ayoub)
The Sept, 24, 2013, Mw7.7 Balochistan Earthquake
The Krafla volcanic crisis

(Hollingsworth et al, JGR, 2012, 2013)
Glacier Monitoring

Multi-temporal Stereo Acquisitions using Worldview GSD 50 cm:

- January 30, 2013 (x2)
- February 9, 2013 (x2)
- February 28, 2013 (x2)

- Bundle adjustment between all images,
- Multi-scale image matching due to large disparities (up to 1000 pixels),
- Regularized matching because of occlusions

Franz Josef Glacier

2 km

(Sebastien Leprince)
Glacier Monitoring

- 3D surface displacements -

January 30 and February 9, 2013

East-West

-1.5 m/day 1

North-South

-0.8 m/day 2

Vertical

-1.5 m/day 1.5

(Sebastien Leprince)
Earthquake Damages from repeated LiDAR survey

(Bruno Conejo, Sebastien Leprince)
Dunes Dynamics

Nili Patera - HiRISE

Time-series of 9 HiRISE images covering one Mars year

(Bridges et al, 2012; Ayoub et al, in press)

(Francois Ayoub)
Dunes Dynamics

Measurement of ripple migration

Bridges et al., 2012, Nature

(Francois Ayoub)
Dunes Dynamics

Seasonal sand flux variation

Sand flux variations estimated from ripple migration

(Francois Ayoub)
Landslides

(Quickbird, 2003)

(Delacourt et al, 2004)
Landslides

(Booth et al., 2013)
Next: Staring imaging
Some science themes which might then be addressed:

- Earthquakes: details of seismic ruptures
- Volcanoes: details of eruptions
- Glacier: volume budget, episodic flow
- Landslides: episodic flow, volume estimate
Geo Seismic Imager

Geostationary satellite

Real time images of earthquakes

Remi Michel
Dave Redding
Erkin Sidick
Pablo Ampuero
Sebastien Leprince
A M_w 7.0 quake seen by a 4 m GSI

Model, Super-Shear Earthquake, M_w 7, $V_x = [-0.15; 1.15] \text{ m.s}^{-1}$

Expected from a Geostationary Telescope, $D = 4m$

(Michel et al, 2012)
The ‘Shake Out’ scenario (a Mw 7.8 earthquake on the San Andreas Fault)

Simulation by Rob Graves, USGS (Graves et al., 2011)
A M_w 7.8 quake seen by a 3.6m GSI

- Shakeout Sim: a $M_v = 7.8$ quake as seen by a 3.6m GSI

(Erkin Sidick, Dave Redding)
Ice

(Rignot et al., 2011)

(Pratt et al, JGR, 2014)
Volcanoes

(Walter, JGR, 2013)
Volcanoes

(Johnson et al., Nature, 2008)
Thanks to collaborators:

CEA: Rémi Michel, Renaud Binet...

CALTECH: Sébastien Leprince, Francois Ayoub, Jiao Lin, Bruno Conejo, Sylvain Barbot, James Hollingsworth, Neus Sabater...

Jean-Paul Ampuero, Nadia Lapusta Nathan Bridges, Dave Redding, Erkin Siddick...

and funders:
Figure 3. Thermal images of the summit region taken at night from a location north of the Volcán de Colima, 2.59 km from the northern rim of the summit crater. A subset of infrared time-lapse recordings enabled the retrieval of pixels with ~1 m² dimensions. This work employed digital image correlation methods to analyze systematic pixel offsets. The white box in frame 20 outlines the area shown in Figure 4. The thermal images shown here are saturated for visualization purposes only. Also shown is the approximate location and direction of explosions (the arrows in frame 14).
Figure 6. (a) Comparison of the mean horizontal (Vx) and vertical (Vy) displacements calculated for region RE1 (see Figure 4 for the location). The first image is the reference image, with which each subsequent image is cross-correlated. For visualization purposes, we show every fifth image only. Note the occurrence of a generally stepwise deformation without precursory deformation. Vx ends after the explosion, whereas Vy continues for up to ~10 min. (b) Displacement occurred along profile A-B, as indicated in frame 6 of Figure 4a. The largest displacement occurred at the center and above.

(Walter, JGR, 2013)
Figure 2. (a) Slip event times and types. Note that missed low-tide events are now more common than low-tide slips. Ross Sea tide (black) is CATs2008a tidal model (L. Padman, personal communication, 2008). (b) Example on-ice colocated GPS (blue) and raw seismogram (green—instrument response not removed) and the correlation with 30–100 s filtered vertical-component seismogram at VNDA showing the relationship of in situ translational velocity changes and far-field seismic phases.

(Pratt et al, JGR, 2014)
Figure 4. Rupture patterns using combined 2010 and 2011 traveltime pick data. The first rupture phase is recorded at all stations but two of the most downstream, whereas the second rupture phase is recorded at all stations. Similar slip events from both field seasons using duration and onset location were combined to show rupture propagation with isochrone contours for (a) central initiation, (b) grounding-line initiation, and (c) second-phase initiation. RIS = Ross Ice Shelf; black stars show acceleration initiation locations. (d) Broadband velocity functions formed by combining GPS and seismograph records for three stations across the array. Colors correspond to stations shown in Figure 4c. Vertical black lines show the onsets of accelerations that correspond to the teleseismic phases.
1. The surface of Earth and other planet is the primary source of information on subsurface structures and geological history.

2. The surface of Earth and other planet changing as a result of both internal and external dynamic processes.

3. The volume of remote sensing data available is increasing exponentially, driven by commercial and defense applications.

4. Science opportunities have emerged also because of development of specific techniques to exploit those data.