Monitoring capability for volcanic eruptions: Limb scanning satellites

Adam E. Bourassa and the OSIRIS Team
University of Saskatchewan, Canada

Keck Institute for Space Studies

Monitoring of Geoengineering Effects and their Natural and Anthropogenic Analogues

November 15-16, 2011
A view of the Earth’s limb from the ISS
The Limb View of the Atmosphere

Rule of Thumb: 1 arcminute ≈ 1 km at the tangent point
Solar Occultation

- A long term measurement standard (1970’s) for ozone and aerosol profiles
- Stability – inherent calibration and pointing information
- High vertical resolution (around 1 km)
- Relatively poor global coverage
 - Two profiles per orbit: observed sunrise and sunset

Solar Occultation Missions
- SAM II, 1978 – 1993
- SAGE II, 1984 – 2005
- HALOE, 1991 – 2005
- POAM II/III, 1993 – 2005
- ACE, 2003 – current

The future?
- SAGE III on ISS in 2014
- CASS (ACE-FTS2 + OSIRIS2)?
Solar Occultation

From Assessment of Stratospheric Aerosol Properties, SPARC Report, Ed. Thomason
SAGE III on ISS directly supports NASA Strategic Goals to extend and sustain human activities across the solar system; expand scientific understanding of the Earth and the universe in which we live.

Primary Science Objective:
Monitor the vertical distribution of aerosol, ozone and other trace gases in Earth’s stratosphere and troposphere to enhance understanding of ozone recovery and climate change processes in the upper atmosphere.

<table>
<thead>
<tr>
<th>Mission Implementation</th>
</tr>
</thead>
</table>
| **Partners** | **LaRC** (Science; Project Management; System Engineering and Mission Design; SMA; I&T; Launch Support; Mission Operations; Science Data Processing and Delivery)
JSC/ISSP (System Engineering Support, Hexapod Pointing System and ISS mounting adaptors, ISS Mounting Location, Launch Processing and Access to Space, Infrastructure and Telemetry Data) |
| **Launch** | August 2014 (Space X) |
| **Orbit** | ISS Mid-Inclination orbit |
| **Life** | 3 years (nominal) / ISS manifest through 2020 for extended mission |
| **Payload** | Sensor Assembly (LaRC), Hexapod (ESA), CMP (LaRC), ExPA (JSC/ISS), ICE (LaRC), HEU (ESA), IAM (LaRC), DMP (LaRC), Nadir Viewing Platform (LaRC) |
| **Data** | Solar Occultation: Multi-wavelength Aerosol Extinction, O3, NO2, H2O
Lunar Occultation: O3, NO2, NO3
Limb Scatter: Multi-wavelength Radiance |
The Inclined ISS Orbit is Ideal for SAGE III measurements
Mission Foundation is Based on Existing Flight Hardware

- SAGE III has been maintained at NASA LaRC
- Hexapod has been maintained at Thales / Alenia in Turin Italy
Limb Scattering

A measurement of the intensity of sunlight scattered from the atmosphere.
Measuring Aerosols with Limb Scatter

- A non-linear inverse problem

\[y = F(x, b) \]

The measured spectra \[\rightarrow \]

The physics of limb scattered sunlight \[\rightarrow \]

All other inputs \[\rightarrow \]

Our desired parameter (the aerosol state)

- What is the physics? The Radiative Transfer Equation

\[
I(r_0, \hat{\Omega}) = \int_{s_1}^{0} J(s, \hat{\Omega}) e^{-\tau(s,0)} \, ds + \tilde{I}(s_1, \hat{\Omega}) e^{-\tau(s_1,0)}
\]

\[
J(s, \hat{\Omega}) = k_{\text{scat}}(s) \int_{4\pi} I(s, \hat{\Omega}') \tilde{p}(s, \Theta) \, d\Omega'
\]
The source term arises from the incident sunlight:

\[
J(s, \hat{\Omega}) = k_{\text{scat}}(s) \int_{4\pi} I(s, \hat{\Omega'}) \tilde{p}(s, \Theta) \, d\Omega'
\]

At a scattering volume, the sun is incident from exactly one direction:

The source term results from scattering of incoming radiation into all directions.

The phase function, \(\tilde{p}(s, \Theta) \), defines the probability of scattering in a direction.
The source term is radiation scattered from atmosphere and earth surface:

\[J(s, \hat{\Omega}) = k_{\text{scat}}(s) \int_{4\pi} I(s, \hat{\Omega}') \tilde{p}(s, \Theta) \, d\Omega' \]

At a scattering volume, radiation is coming from all directions.

The **total source term** is the sum of the scattering of radiation from every incoming direction into every outgoing direction.

Ray tracing computer model: discretize the parameters and the integrals.
SASKTRAN Radiative Transfer Model

A fast, fully spherical, 3D, successive orders, discrete ordinates model.

A subdivision of the source terms (and ground radiance) by scattering order:

\[I(\vec{r}_0, \hat{\Omega}) = \int_{s_1}^{0} \left[J_1(s, \hat{\Omega}) + J_2(s, \hat{\Omega}) + \sum_{i=3}^{\infty} J_i(s, \hat{\Omega}) \right] e^{-\tau(s,0)} \, ds + \left[\tilde{I}_1(s_1) + \tilde{I}_2(s_1) + \sum_{i=3}^{\infty} \tilde{I}_i(s_1) \right] e^{-\tau(s_1,0)} \]

A recursive calculation for n-order multiple scattering:

\[J_i(s, \hat{\Omega}) = k_{\text{scat}}(s) \int_{4\pi} [I_{i-1}(s, \hat{\Omega}')] \hat{p}(s, \hat{\Omega}, \hat{\Omega}') \, d\Omega' \]

\[I_i(\vec{r}_0, \hat{\Omega}) = \int_{s_1}^{0} J_i(s, \hat{\Omega}) e^{-\tau(s,0)} \, ds + \tilde{I}_i(s_1) e^{-\tau(s_1,0)} \]

\[\tilde{I}_i(s_1) = \frac{a}{\pi} \int_{2\pi} I_{i-1}(s_1, \hat{\Omega}') \cos(\theta') \, d\Omega' \]
OSIRIS does limb scanning and limb imaging

1) Optical Spectrograph
 - Single line of sight, narrow horizontal slit
 - Grating spectrograph, 280-810 nm, 1 nm res
 - Auto-exposed limb scan

2) Infrared Imager
 - Three channel filtered vertical imager
 - 1.26 and 1.27 μm O₂(1D) emission
 - 1.53 μm OH emission and scattered sunlight

Launch 2001 – 100% aeronomy measurements since 2007
MART Version 5.0 retrievals fully processed including aerosol extinction coefficient at 750 nm
The Limb Scatter Signature of Stratospheric Aerosol

Aerosol Weighting Functions (Jacobian)

- Visible/NIR stratospheric aerosol signal is well characterized by Mie scattering (liquid droplets around 0.1 to 0.3 micron radius)
- Cross section spectrum is a relatively weak function of wavelength
- Enhancement and attenuation effects that depend on (aerosol) optical depth
The OSIRIS Aerosol Retrieval: Methodology

Typical limb spectrum at 22 km tangent altitude calculated with the SASKTRAN Radiative Transfer Model

The Measurement Vector

\[y = \log \left(\frac{I(\lambda_2)}{I(\lambda_1)} \right) - \log \left(\frac{I_R(\lambda_2)}{I_R(\lambda_1)} \right) \]

\[I_R(\lambda) \equiv \text{Model with no aerosol} \]

Effectively a measure of the residual scattering (positive Jacobian required)
OSIRIS Aerosol Retrieval: Error Analysis

- Newly developed precision analysis for MART V5.01 Processing
- Numerical estimate of the co-variance matrix
 - Propagation of the Level 1 error bar (random error) to the state parameter
 - Linearization of the inversion about the retrieved state
OSIRIS Aerosol Retrieval: Error Analysis

Statistics for 765 “Matched Pairs” in 2008 for latitudes 0 to 10 N

- **750 nm Aerosol Extinction (10⁻³ km⁻¹)**
 - Thermal Tropopause
 - Matching Pair Statistics
 - Numerical Estimate

- **Relative Precision**
 - Thermal Tropopause
 - Matching Pair Statistics
 - Numerical Estimate
Comparison with SAGE II

Figure 8 from Vernier et al., JGR, 2009: SAGE II zonal mean 1.0 micron extinction ratio (20 N to 20 S); 1998-2006

Lower stratospheric volcanic eruptions:
• Raventador, Ecuador, September, 2002
• Manam, Papua New Guinea, February, 2005
Lower stratospheric volcanic eruptions:
- Raventador, Ecuador, September, 2002
- Manam, Papua New Guinea, February, 2005
Figure 9 from Vernier et al., JGR, 2009: CALIOP zonal average scattering ratio for 16 day time periods throughout 2007

- Early 2007: Aerosol layer from Montserrat 10 months post-eruption confined in high altitude tropical stratospheric reservoir with relatively clean TTL
- Later 2007: Double horned vertical propagation towards subtropics in westerly phase of QBO
Figure 9 from Vernier et al., JGR, 2009: CALIOP zonal average scattering ratio for 16 day time periods throughout 2007

- Early 2007: Aerosol layer from Montserrat 10 months post-eruption confined in high altitude tropical stratospheric reservoir with relatively clean TTL
- Later 2007: Double horned vertical propagation towards subtropics in westerly phase of QBO
Comparison with SAGE III

- SAGE III (V4) 755 nm Aerosol Extinction
- OSIRIS 750 nm Aerosol Extinction
- Tight coincident scan comparison
 - 1° latitude, 2.5° longitude, 6 hours
 - Good agreement of magnitude and vertical features
Comparison with SAGE III

Altitude (km)

-100 -50 0 50 100

Percent Difference

2002
117 Coincidences

2003
134 Coincidences

2004
137 Coincidences

2005
91 Coincidences

Adam E. Bourassa
Limb Scanning Satellites
Comparison with SAGE III

Figure 4 from Thomason et al., ACP 2010:
SAGE III – SAGE II; SAGE III - POAM III
Comparison with SAGE III

SAGE III vs OSIRIS for 2002-2005

- **SAGE III 755 nm Extinction (km$^{-1}$)**
 - 2002: # of points: 2609, Mean: 1.062, Std Dev: 0.39544
 - 2003: # of points: 3622, Mean: 1.0356, Std Dev: 0.33764
 - 2004: # of points: 3236, Mean: 1.044, Std Dev: 0.27802
 - 2005: # of points: 2302, Mean: 1.2189, Std Dev: 0.63488

- **OSIRIS 750 nm Extinction (km$^{-1}$)**
 - 2002:
 - 2003:
 - 2004:
 - 2005:

Graphical Comparison

- Scatter plots showing the comparison of SAGE III and OSIRIS for 2002-2005.
- Each plot includes the number of points, mean, and standard deviation for each year.
- Color gradient indicates altitude range from 10km to 40km.
Comparison with SAGE III – Zonal Average Time Series

![Comparison Graph]

- **Degrees**
- **Altitude (km)**
- **SAGE III**
- **OSIRIS**
- **Rel Diff**

Latitude (N)
- **OSIRIS SZA**
 - 0
 - 0.2
 - 0.4
 - 0.6
 - 0.8

Time
- Jun02
- Jun03
- Jun04
- Jun05
OSIRIS Measurements during the SAGE III Mission

[Graph showing data with color gradients and labeled axes]

Altitude (km)

55-65° N

15-25° N

15-25° S

55-65° S

OSIRIS retrievals (optical depth from 20-25 km) for all scans since 2002 within 700 km of Mauna Loa

Mauna Loa Observatory Integrated Lidar backscatter 20-25 km

Figure from Hofmann et al, GRL, 2009
OSIRIS Stratospheric Aerosol Time Series

OSIRIS Mission Time Series: 750 nm Aerosol Extinction Ratio (Zonal Average 20 N to 20 S)
Figure 2; Vernier et al. GRL, 2011
The Eruption of Kasatochi Volcano

- Kasatochi volcano (52 N, 175 W) erupted August 8, 2008 (almost perfect timing for observation with OSIRIS)
- Injection of 1.2 - 1.5 Tg SO2 to altitude up to 16 km
- The largest stratospheric volcano since 1991
Retrieved Aerosol Extinction: Kasatochi Daily Time Series

- The 380 K level of potential temperature delineates the tropical tropopause layer and the lowermost stratosphere from the deep stratosphere
 - Focus analysis above 380 K
 - Pre-eruption: typical background state (no effect of Okmok eruption on July 12?)
 - 10 to 30 days post eruption: clear evidence of an enhanced layer with significant variability (streamers?)
 - 40 days post eruption: a stable enhanced layer between 15 and 22 km at mid to high latitudes (typical e-folding conversion time of 30 days)
 - No clear enhancement in the deep tropics
 - 80 days post eruption: decay of the stable layer (high-latitude aerosol lifetime is less than 1 year)
• Northern hemisphere zonal averages
• Again focus analysis above 380 K
• Pre-eruption: Junge layer
• Maximum enhancement in the lower stratosphere (not lowermost) in early October of up to 5 times background values
• A remarkable delineation of the 380 K level in the aerosol distributions
• Clear transport to the tropics (2 way leaky tropical pipe)
• No mixing into the tropical stratospheric reservoir
• Remarkable mixing barrier above the subtropical jet

Bourassa et al., JGR, 2010
Kasatochi Climate Effects: Model Simulations

- OSIRIS retrievals of zonal average vertical stratospheric aerosol optical depth from 380 K
- Compared to simulations of a 1.5 Tg Kasatochi eruption using NASA GISS ModelE (a coupled atmosphere-ocean general circulation model) performed by Kravitz and Robock
- The spatial and temporal distributions of the volcanic aerosol enhancement agree very well
- The optical depth predicted by the model is an order of magnitude larger
 - total column, wavelength, particle size, injection characteristics

Kravitz et al., JGR, 2010
The Eruption of Sarychev Peak

- Sarychev Peak, Kuril Islands, June 12, 2009, 1.2 Tg SO2 up to 16 km
The Eruption of Sarychev Peak

- Sarychev Peak, Kuril Islands
- June 12, 2009
- 1.2 Tg SO2
The Eruption of Sarychev Peak

- Sarychev Peak, Kuril Islands, June 12, 2009
- 1.2 Tg SO2
- Effects of the eruption modeled with a nudged version of HadGEM2 climate model
 - work by Haywood et al, Hadley Center, U.K.
 - published in JGR, 2010
OSIRIS Aerosol Optical Depth Movie: 2008-2010