The Solar Gravitational Lens:
It is out there… can we use it?

Slava G. Turyshev
Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91009 USA
Triumph of Mathematical Astronomy in 19th Century

1. **Anomalous precession of Mercury’s perihelion**:
 - 43 arcsec/cy cannot be explained by Newton’s gravity

2. **Before publishing GR, in 1915, Einstein computed the expected perihelion precession of Mercury**
 - When he got out 43 arcsec/cy – a new era just began!!

1845: the search for Planet-X:
- Anomaly in the Uranus’ orbit → Neptune
- Anomalous motion of Mercury → Vulcan

Discovery of Neptune: 1845

Sir Isaac Newton (1643-1727)

Almost in one year LeVerrier both confirmed the Newton’s theory (Neptune) & cast doubt on it (Mercury’s’ anomaly).

Urbain LeVerrier (1811-1877)

Newtonian Gravity

General Relativity

Albert Einstein (1879-1955)
In 1913 Einstein wrote to Hale:

- Is eclipse necessary to test this prediction?
- Hale replied: “Yes, an eclipse is necessary, as stars near the Sun would then be visible, and the bending of light from them would show up as an apparent displacement of the stars from their normal positions.”

In 1914, the first attempt - a German expedition

- During a total eclipse occurring on Aug. 21, 1914 a German astronomer Finley-Freundlich led an expedition to Russia to test the Einstein's prediction.
- However, the First World War (July 28, 1914) intervened, and no observations could be made.
The First Test of General Theory of Relativity

Gravitational Deflection of Light:

\[\alpha_{GR}(b) = \frac{2(1 + \gamma)GM_\odot}{c^2 b} \approx 1.75 \left(\frac{1 + \gamma}{2} \right) \left(\frac{R_\odot}{b} \right) \text{arcsec} \]

Deflection = 0;
Newton = 0.87 arcsec;
Einstein = 2 x Newton = 1.75 arcsec

Solar Eclipse 1919: possible outcomes

Campbell’s telegram to Einstein, 1923

Einstein and Eddington, Cambridge, 1930
Gravitational Deflection of Light is a Well-Known Effect Today
They are everywhere…

Gallery of Gravitational Lenses

HST • WFPC2

PRC99-18 • STScI OPO • K. Ratnatunga (Carnegie Mellon University) and NASA
THE SOLAR GRAVITATIONAL LENS

Our solar system and tests of gravity
40+ Years of Solar System Gravity Tests

Techniques for Gravity Tests:

Radar Ranging:
- Planets: Mercury, Venus, Mars
- s/c: Mariners, Vikings, Pioneers, Cassini, Mars Global Surveyor, Mars Orbiter, etc.
- VLBI, GPS, etc.

Laser:
- SLR, LLR, interplanetary, etc.

Dedicated Gravity Missions:
- LLR (1969 - on-going!!)
- GP-A, '76; LAGEOS, '76,'92; GP-B, '04; LARES, '12; LISA, 2030+(?)

New Engineering Discipline – Applied General Relativity:
- Daily life: GPS, geodesy, time transfer;
- Precision measurements: deep-space navigation & μas-astrometry (ESA’s Gaia).

General relativity is well tested, can we use it to build something?
THE SOLAR GRAVITATIONAL LENS

Mission to the Gravity Lens of the Sun

Gravitational Lens of the Sun: Its Potential for Observations and Communications over Interstellar Distances

Abstract. The gravitational field of the sun acts as a spherical lens to magnify the intensity of radiation from a distant source along a semi-infinite focal line. A spacecraft anywhere on that line in principle could observe, eavesdrop, and communicate over interstellar distances, using equipment comparable in size and power with what is now used for interplanetary distances. If one neglects coronal effects, the maximum magnification factor for coherent radiation is inversely proportional to the wavelength, being 100 million at 1 millimeter. The principal difficulties are that the nearest point on the focal half-line is about 550 times the sun-earth distance, separate spacecraft would be needed to work with each stellar system of interest, and the solar corona would severely limit the intensity of coherent radiation while also restricting operations to relatively short wavelengths.

About 40 years ago, Einstein (1) published a short note in Science on the focusing of starlight by the gravitational field of another star. He emphasized the improbability of observing this phenomenon by the chance alignment of two stars and the earth. From concepts based on current technology and trends, however, it appears that gravitational focusing of electromagnetic radiation might be employed, by design, for highly directional observations and communications over interstellar distances.

In such use, the gravitational field of the sun could play several roles. First, it might be used to reduce fuel and time re-

I + ν, where the refractivity ν = g/r at radius r. A ray is deflected through the angle α = 2g/a, where a is the ray impact parameter and g is the gravitational radius (g = 2Gm/c², where G is the gravitational constant, m is the mass of the central body, and c is the speed of light). It is assumed throughout that α << 1. An observer at position z behind the lens and x from the center line, as illustrated, would see an energy density lessened by defocusing in the plane of propagation, but increased by focusing due to the curved limb normal to this plane. The relative single-ray intensity I = F₁²F₂², where in ray optics F₁² =

Kraus J.D., Radio Astronomy, Cygnus-Quasar Books, Powell, Ohio, 6-115 (1986)

Many papers by C. Maccone

Solar Gravity Lens: wave optics treatment

• Wave-theoretical treatment of the gravitational lens:
 - Consider the scattering of a plane EM wave by the Sun
 - Solve Maxwell’s equations with the symmetry of a plane wave
 - The Sun is assumed to be spherical and, also,
 \[\lambda \ll r_g = \frac{2GM_\odot}{c^2} \approx 2.95 \text{ km} \ll R_\odot \]
 - Consider the image of a distant star and analyze the relevant components of Pointing vector

Points of stationary phase provide the boundaries between the regions:

\[\sin \theta \approx \frac{b}{r} - \frac{2r_g}{b}, \quad r \leq \frac{b^2}{2r_g} \]
\[\sin \theta \approx \frac{2r_g}{b} - \frac{b}{r}, \quad r \geq \frac{b^2}{2r_g} \]

THE SOLAR GRAVITATIONAL LENS

Distance scale

- Sun
- Earth
- Mars
- Jupiter
- Saturn
- Neptune
- Pluto
- Asteroid Belt
- Kuiper Belt
- Hydrogen Wall
- Solar gravity lens
- Oort Cloud
- Edge of Local Cloud?
- Edge of G Cloud?
- α-Centauri
- Interstellar Medium
- Heliosphere

Distance scale in AU:
- 1 AU (Earth-Sun distance)
- 10 AU
- 100 AU
- 1,000 AU
- 10,000 AU
- 100,000 AU
- 1,000,000 AU

Scale marks:
- 1 AU
- 10 AU
- 100 AU
- 1,000 AU
- 10,000 AU
- 100,000 AU
- 1,000,000 AU
Double images of equal brightness
- Luminosities are very close: $\mathcal{L}_1 \approx \mathcal{L}_2$

Double images of unequal brightness
- Luminosities may differ up to $\mathcal{L}_1 / \mathcal{L}_2 \approx 10^2$

- In both cases, the two stars are located at $\alpha_1 = 0$ (no deflection) and at $\alpha_2 = 2\alpha_0(R_\odot / b)$, with a weak bridge in between.

Fig. 2. Transformation of the image configuration I of the object O as the object moves from left to right behind the deflector D.

The Solar Gravitational Lens

Image of a moving source
THE SOLAR GRAVITATIONAL LENS

Focal beam of extreme intensity

- Satisfies conditions: \(\frac{\lambda}{2\pi b} \ll \theta \ll \frac{2r_g}{b} \) and \(z \geq \mathcal{F}_0 \)
 - For small departures from the optical axis \(\rho \ll \rho_0 \approx b \), the gain of the solar gravitational lens is:

\[
G(\rho, \lambda) \approx 4\pi^2 \frac{r_g}{\lambda} J_0^2 \left(\frac{2\pi \rho}{\lambda} \sqrt{\frac{2r_g}{\mathcal{F}}} \right)
\]

- Max value of \(G(\rho, \lambda) \) is on axis:

\[
G_{\text{max}}(0, \lambda) = 4\pi^2 \frac{r_g}{\lambda}
\]
 - if \(\rho \) increases, gain decreases (while oscillating), reaching

\[
G(\rho_1, \lambda) \approx \left(\frac{8\pi r_g}{\lambda} \right)^{1/2} \text{ for } \rho_1 = \left(\frac{\lambda \mathcal{F}}{\pi} \right)^{1/2}
\]
 - going further down to its mean value \(G = 1 \) for \(\rho \gg \rho_0 \approx b \).

Gain of the solar gravity lens as seen in the image plane as a function of possible observational wavelength \(\lambda \) and the optical distance \(\mathcal{F} \):

\[
\mathcal{F} = 600 \text{ AU} \quad \text{and} \quad \mathcal{F} = 1200 \text{ AU}
\]

As expected, the gravity lens is very sensitive to a tangential motions (e.g., in the image plane).

Important properties of the Lens

- **High angular resolution:**
 - We use the angle, $\epsilon_{10\text{dB}}$, that corresponds to the distance, from the optical axis to the point where gain decreases by 10 dB:
 \[
 \epsilon_{10\text{dB}}(b, \lambda) = \frac{\rho_{10\text{dB}}}{F} \approx \frac{\lambda}{\pi^2 b}, \text{ for } \lambda = 1 \text{ mm} \]
 \[
 \epsilon_{10\text{dB}}(R_{\odot}, 1 \text{ mm}) \approx 3.0 \times 10^{-8} \text{ arcsec}
 \]
 \[
 \rho_{10\text{dB}}(R_{\odot}, 1 \text{ mm}) \approx 11.9 \text{ m}
 \]

- **Major brightness increase:**
 - Since for the Sun the frequency can have values between 10^4 Hz (radio waves) and 10^{10} Hz (visible light) or even 10^{14} Hz (γ-rays), a gravitational lens can enlarge the brightness of a star by the same remarkable factor.

- **Extremely narrow “pencil” beam:**
 - The plane wave is focused into a very narrow beam of extreme intensity; the radius of which is $\rho = \sqrt{\lambda F / \pi}$, thus, $\rho(1 \text{ mm}, F_0) \approx 114.1 \text{ km}$

- **Rapid spatial oscillations:**
 - The components of the Poynting vector and the intensity are oscillating with a spatial period $\delta \rho = \lambda \sqrt{F / 8r_g}$, thus, $\delta \rho(1 \text{ mm}, F_0) \approx 60 \text{ m}$

- **Angular distribution of intensity:**
 - Observer would eventually see a significantly magnified source at $\theta \approx 0$.

The width of the Lens for a given telescope diameter:
- At a distance $F(b)$ from the Lens, a telescope with diameter $2r_0$ also collects the light from the rays with impact parameter $b' \approx b + \frac{r_0}{2}$, therefore, the width is $\delta b = r_0/2$.
- The distance between $F(b')$ and $F(b)$ is $\delta F(r_0) = F_0 \frac{r_0}{R_\odot}$, for 1m telescope this distance is $\delta F(0.5 \text{ m}) = 59 \text{ km}$.

Collecting area:
- At this distance, the total collecting area of the solar gravitational lens is $S_{GL} = S(b') - S(b) \approx \pi br_0 = S_{GL0}(r_0) \frac{b}{R_\odot}$, where $S_{GL}(r_0) = \pi R_\odot r_0$.
- For a 1-m telescope, the total collecting area of the solar lens is: $1.1 \times 10^9 \text{ m}^2$, which is equivalent to a telescope with a diameter of $\sim 37.3 \text{ km}$.
Solar boundary is complex – how to define the limb of the Sun at 0.1 picorad (or ~1.5 cm)?
• Complications:
 – A free electron gas responds to the variable electric field of a passing EM wave and, for low enough frequencies (< 100 MHz), will absorb it.
 – With refractive index <1, the anisotropy of the atmosphere causes refractive bending and a divergence in the propagating rays.
 – Hence, the focus for a given impact parameter will be shifted to larger distances than expected if the Sun did not have an atmosphere.

• Modeling the solar corona:
 – The plasma contribution to the total deflection angle is related to the change in the optical path
 \[\Delta \ell = \frac{e^2}{2\pi m_e c^2} \int_{\text{path}} n_e(t, \vec{r})d\ell \]
 – We decompose the electron density \(n_e \) in static, spherically symmetric part \(\bar{n}_e(r) \) plus a fluctuation \(\delta n_e \) i.e. \(n_e(t, \vec{r}) = \bar{n}(r) + \delta n_e(t, \vec{r}) \)
 – We use the, so-called, “Cassini model”:
 \[\bar{n}_e(r) = \left(\frac{2.99}{\eta^{16}} + \frac{1.55}{\eta^6} \right) \times 10^8 + \frac{3.44 \times 10^5}{\eta^2} \text{ cm}^{-3} \text{ where } \eta = r/R_\odot \]
 – Deflection due to solar plasma:
 \[\alpha_{p1}(b, \nu) = \left(\frac{\nu_0}{\nu} \right)^2 \left[2.683 \times 10^3 \left(\frac{R_\odot}{b} \right)^{16} + 2.07 \times 10^2 \left(\frac{R_\odot}{b} \right)^6 + \left(\frac{R_\odot}{b} \right)^2 \right] \text{, with } \nu_0 = 6.62 \text{ MHz} \]
THE SOLAR GRAVITATIONAL LENS
Effects of plasma on the Solar Lens

• Total deflection: gravity & plasma

\[\alpha_{\text{tot}} = \alpha_{\text{GR}} - \alpha_{\text{pl}} = \frac{2r_g}{b} - \alpha_{\text{pl}} \]

− Note the opposite sign. For observer: gravity bends the ray outwards, plasma inwards, and the different dependence on \(b \), plasma being steeper.

• Moving the interference zone out:

\[\frac{b}{F_{\text{gr+pl}}} = \alpha_{\text{tot}} = \frac{2r_g}{b} - \alpha_{\text{pl}} \]

− For impact parameters \(b/R_{\odot} \in [1.05, 1.35] \)

\[F_{\text{gr+pl}}(b, \nu) = 546 \left(\frac{b}{R_{\odot}} \right)^2 \left[1 - \frac{\nu_{\text{crit}}^2}{\nu^2} \left(\frac{R_{\odot}}{b} \right)^{15} \right]^{-1} \text{AU} \]

\(\nu_{\text{crit}} \approx 120 \text{ GHz} \)

Refraction of radio-waves in the solar atmosphere: the steady-state model, and X- and K-bands radio freqs. The absolute value for GR is also shown.

Effective optical distances for different freqs and impact parameters. From top to bottom: 170 GHz, 300 GHz, 500 GHz, and last 1 THz.
• **Observational considerations:**

 – **Turbulence in solar corona:** is likely of the same order as its average: shortening the observational wavelength.
 \[\delta n_e(t, b) \approx \langle n_e\rangle (b). \]

 – To minimize the focal distances, one must consider only frequencies >1 THz.

 – Solar radiation will dominate the detector at most wavelengths, requiring careful selection of the optimum observing frequency and observing strategy.

 – At 550 AU the Sun subtends \(~3.5\). At 1mm, the diffraction limited size of an antenna will be large compared to the size of the solar disk: a 10m antenna has a beam size of \(~50\)”. However, a 1m telescope at 1um is \(~1.3\)".

 – Unless the source to be observed is strong, observations in the mm-wave range will have to be differential in wavelength space and have to require that the source has a different spectrum than the Sun.

• **Instrumental impact:**

 – This observing strategy imposes severe requirements on the stability of the detector system, to achieve a reliable subtraction of the solar flux.

 – Coronogrophic observations can be envisioned at short (IR, vis) wavelengths, however, in the IR and optical, emission and/or scattering from the Zodiacal dust will present a challenge for such observations.
Possible science:

- **Constraints:**
 - The Solar Gravity Lens presents a set of unique challenges.
 - We are forced to consider only frequencies >1 THz (0.3 mm).
 - Both the magnification and the plate scale are very large.
 - Since controlled tangential motion is unlikely, the science has to be restricted to those goals that can be accomplished utilizing the trajectory given by the initial ejection from the solar system.

- **Two possible scenarios:**
 - Either pre-selected specific targets and require navigation to place the spacecraft at the focus corresponding to those specific target or utilize the large amplification provided by the gravity lensing to observe "random" parts of the sky to great depth.
 - The source selection for this telescope is limited to sources that are small, but with interesting smaller-scale variations which can be explored with one-dimensional mapping.
Possible science:

- **Potential targets may include**
 - **Pre-selected targets:** imaging of exoplanets (license plate numbers...), accretion disks around BH, compact stars, the cores of AGNs, etc.
 - An observing scenario is to allow the tangential component of the trajectory velocity to sweep the s/c across the image of the source to gather a one dimensional map. The number of targets in this mode is small as acquisition of secondary targets will require large s/c motions.
 - **Sweeping** offers a promising approach given that suitable high surface density structure/targets can be identified. Utilizing the high signal amplification deep surveys of small scale structure could be performed.
 - Target classes have to be uniformly distributed over the sky contain small scale structure and be of low enough luminosity. Most likely targets are cosmology or galaxy cluster studies.
 - A possibility might include structures in the emission from the cosmic web. As the majority of the baryonic mass changes between the present time and z>1 from gas contained in a hot phase to warm gas. For a flat universe and H0=60 corresponds to an angular size of 1", a scale well suited for mapping with Solar Gravitational Lens.
Summary: Gravitational Lens of the Sun

• **The inner Solar Gravitational Lens: 25 AU outwards**
 – Most of the solar mass is concentrated in its core (radius is 0.25 Rsun). Over 95% of the solar mass is concentrated in the solar core, which is inaccessible to photons; however, it can be reached by extrasolar neutrinos.
 – Foci is 16 times shorter than for photons ~ 25 AU
 – We do not have much statistics on extrasolar neutrinos
 – Detector technology need improvements…. but worth thinking about this.
 – Should there be a well-known neutrino source, such as AGNs, supernovae, etc., this may be of interest to a wider scientific community

• **The outer Gravitational Lens: 550 AU outwards**
 – Challenging, but exciting possibilities relying on Gain of 110dB (at 1 um)
 – Even a confirmation would be great
 – Pre-selected, well-defined in advance specific targets and require navigation to place the spacecraft at the foci corresponding to those targets (exoplanets);
 – Choose to observe "random" parts of the sky to great depth. Potential targets may include accretion disks around black holes, compact stars or the cores of AGNs, small-scale structure, deep fields...