Cosmic Squid: A Giant Spinning CubeSat Solar Sail

15 January 2015
KISS ISM Workshop

Manan Arya
Space Structures Laboratory
Graduate Aerospace Laboratories
California Institute of Technology
Why Go Small?
(i.e. CubeSat Solar Sails)

• Want to launch sooner than 2030

• Want to keep costs low

• Want more than one shot into the ISM

• Want a continuous series of probes into the ISM/to KBOs
Solar Sails

- “Traditional” architecture: four booms, four sail quadrants
- Deployed size limited by boom packaging volume, not sail packaging
- Can increase area/mass (or char. accel.) by removing booms
- Spin to deploy + preload
Cosmic Squid

- 0.1 m × 0.2 m × 0.3 m 6U CubeSat
- Ø 0.1 m × 0.3 m Stowed Sail
- 3 × 1U CubeSats

Deployed sail
Sail held in tension, deployed by spin
Sail Packaging → Sail Size

\[V_p = \pi R_p^2 H_p = 0.00236 \text{ m}^3 \]
\[V_s = \eta V_p \]
\[A = \frac{V_s}{h} \]

\[L^2 = 3r^2 \]
\[A = \frac{\sqrt{3}}{4} L^2 = \frac{3\sqrt{3}}{4} r^2 \]

“Small”
5 um thick, 70% pack. eff. 330 m²

“Big”
2.5 um thick, 90% pack. eff. 850 m²
Size Comparison

NanoSail-D (3.5 m2, 5 kg)

LightSail (5.6 m2, 5 kg)

NEA Scout (9.1 m2, 12 kg)

Lunar Flashlight (9.1 m2, 12 kg)

IKAROS, (14.1 m2, 300 kg)

Cosmic Squid 330 - 850 m2, 11 - 12 kg
Performance

- Mass of each 1U CubeSat $m_u = 2 \, kg$
- Sail mass $m_s = V_s \times 1420 \, kg/m^3 = 2.4 \, - \, 3.0 \, kg$
- Total accelerated mass $m = (3m_u + m_s) \times 1.3 = 11 \, - \, 12 \, kg$
- Characteristic acceleration $a_c = (8.3 \, \mu Pa) A/m$

Char. accel. depends mainly on material thickness

"Small": 0.25 mm/s2 (37 g/m2)

"Big": 0.60 mm/s2 (14 g/m2)
Optimal Solar Sail Trajectories for Missions to the Outer Solar System

Bernd Dachwald*

German Aerospace Center (DLR), Cologne, Germany
Neptune Flyby
Non-Ideal Solar Sail with Characteristic Acceleration of 1.0 mm/s²

Limitation of Sail Temperature

$\min = 0.175 \text{ AU}$
$T_{\max} = 564 \text{ K}$

Flight Time = 1982 days

Dachwald, Optimal Solar Sail Trajectories to the Outer Solar System, 2004
Escape Velocities and Flight Times

Dachwald, Optimal Solar Sail Trajectories to the Outer Solar System, 2004
Escape Velocities and Flight Times

Dachwald, Optimal Solar Sail Trajectories to the Outer Solar System, 2004
Escape Velocities and Flight Times

Dachwald, Optimal Solar Sail Trajectories to the Outer Solar System, 2004
Escape Velocities and Flight Times

Dachwald, Optimal Solar Sail Trajectories to the Outer Solar System, 2004
Spin Rate

Centripetal force on one tip CubeSat: \(m_u \omega^2 r \)
Force profile along diagonal: \(\sqrt{3} P x \)
\(P \) is the pre-load per unit length of membrane
Equating these forces at the tip:
\[
\sqrt{3} P r = m_u \omega^2 r \\
\Rightarrow \omega^2 = \frac{\sqrt{3} P}{m_u} \\
P \approx 0.05 \, Nm^{-1} \\
m_u = 2 \, kg \\
\omega = 0.2081 \, s^{-1} \approx 2 \, rpm
\]

Maximum tension: \(T_{\text{max}} = \sqrt{3} Pr \approx 4 \, N \)
Attitude Control

Vanes on each TipSat can be feathered
Provide variable SRP at each corner

Slew rate:
\[\omega_p = \frac{\tau}{I_\omega} = \frac{A_{vane}P_{SRP}r}{I_\omega} \approx 2.46 \times 10^{-5} \text{s}^{-1} \text{ at } 0.1 \text{ AU} \]

With
\[A_{vane} = 1 \text{ m}^2 \]
\[r = 25 \text{ m} \]

Time for 90° slew: 18 hours
Deployment Concept

Deployment by spinning

Sail tensioned by centrifugal force, use the 3 1U CubeSats as end masses
Power

- **Option 1: PV**
 - 50 W array produces
 - 0.02 W at 50 AU
 - 0.005 W at 100 AU
 - Hibernation/Sleep/Short burst science + comm.

- **Option 2: RHU + Thermoelectrics**

- **Option 3: Betavoltaics**
Communication

• Option 1: X-Band/UHF down/uplink
• Option 2: Laser comm.
 – Synergy with imaging systems
System Architecture “Precursor”

- **Tip 1 (Communication):**
 - UHF, X-Band Radio (0.3 U)

- **Tip 2 (Command):**
 - Star Tracker (0.3 U)
 - CD&H (0.2 U)
 - Sail Monitor Camera (0.1 U)

- **Tip 3 (Science):**
 - Magnetometer / Imager (0.4 U)

- **Common for each Tip:**
 - EPS + Battery (0.2 U)
 - Deployable ACS tip vane (0.2 U)
 - Wireless comm. to other tips
System Architecture “ISM Scout”

• Tip 1 (Communication):
 - Optical Comm./Camera (0.8 U)

• Tip 2 (Command):
 - Star Tracker (0.3 U)
 - CD&H MPU (0.2 U)
 - UHF/X-Band Radio (0.3 U)

• Tip 3 (Power):
 - Nuclear Magic Power (0.8 U)

• Common for each Tip:
 - ACS tip vane (0.1 U)
 - Deployable ACS tip vane (0.2 U)
 - Wireless comm. to other Tips
Take Aways

- Can make 0.60 mm/s², 14 g/m² sails now
- 200 AU in 35 years, 7 AU/year
 - Haumea/KBO in 10 years
- Can starting building and launching precursors now
- Low cost to develop, low cost to launch
- Multiple probes to spatially and temporally sample ISM/heliopause/KBOs
Questions, Risks, and Challenges

• Lifetime
 – Other deep space CubeSat missions will address this issue
 • INSPIRE, NEA Scout, Lunar Flashlight, MarCO, Europa CubeSats?

• Survival
 – CubeSat temperature at closest solar approach

• Deployment
• Communications
• Power