IR spectroscopy of Lunar Volatiles

Bethany Ehlmann
Paul Lucey
Tom McCord
Jean-Phillipe Combe
July 23, 2013

M^3
R: pyroxene,
G: NIR reflectance,
B: OH/H2O
What do we want to know?

• **Where** is the H$_2$O(ice,bound)/OH? (Where is each?)

• **How much?** (and how much variation?)

• **What else** is there (regolith, H$_2$S, NH$_3$, etc.)?

• **What is the isotopic ratio?**
IR spectroscopy: Quick Review

- Bends and stretches related to vibrations of molecules, typically associated with a mineral structure

 ![Hexagonal water ice](image)

- Reflected light, $f(F,n,k,D)$

- Emitted light $f(T, n, k, D)$

- On Moon, crossover at 3.1μm (for $T=250K$)
IR spectroscopy $\text{H}_2\text{O} \text{ (ice)}, \text{H}_2\text{O} \text{ (bound)}, \text{OH} \text{ (structural)}$

- Water ice: H_2O
- Montmorillonite [not on Moon]: $(\text{Na, Ca})_{0.33}(\text{Al, Mg})_2(\text{Si}_4\text{O}_{10})(\text{OH})_2 \cdot n\text{H}_2\text{O}$
- Pyroxene (Augite): $(\text{Ca, Na})(\text{Mg, Fe, Al, Ti})(\text{Si, Al})_2\text{O}_6$

• OH vs. H$_2$O-bound and H$_2$O-ice can be discriminated with appropriate spectral sampling and SNR
• Hard to study OH vs. H$_2$O question on Earth because too much water
Where is the H$_2$O(ice,bound)/OH? Where is each?

Recent results: VNIR reflectance

- Three NIR instruments detect 3-µm absorption (M3, VIMS, HRI-IR)
- Certainly OH, possibly bound H$_2$O (deleted) (10-1000ppm)
- Possibly diurnal variation (but difficult to calibrate thermal contribution)
- Highest spatial res (M3) doesn’t have wavelength range to verify H$_2$O-ice

Hydroxylated/hydrated phase: 10-1000ppm and locally higher

Pieters et al.; Sunshine et al.; Clark et al.; 2009, Science
Detecting Minor Constituents

- Multiple scattering enables low abundance constituents to be discerned, e.g. ices of Jovian satellites

H₂O-ice and
1. S-H
2. SO₂
3. CO₂
4. CN

McCord, 1998, JGR
Next generation NIR reflectance

• Enables ice detection (vs. OH, bound H$_2$O) and modeling of abundance
• Drawback: Will always have low photons in permanently shadowed regions
• **Extend coverage out to at least 4.0-5.0 µm** to enable H$_2$O-ice discrimination (and better thermal correction)
• Get **high SNR at high spatial res. near poles**
 – *repeat coverage* over several orbits and co-add
 – *highly elliptical orbit* near craters for better spatial res
 – BYOI: bring your own *illumination* (broadband or tunable laser)
 – or *bring your own solar reflector* from orbit
• Preserve or improve **spectral sampling** for OH vs. H$_2$O and minor constituents
• **Land** and get a closer view
Landed IR instruments

- Improved spatial resolution
- BYOI approach is easier
- Rove and trench to expose materials

VNIR hyperspectral imager tests, JPL Mars yard, July 18, 2013

Sol 23, Opportunity trench

Single pixels, prototype VNIR instrument

Laboratory data

wavelength (nm)
TIR Emission Spectroscopy

- Silicate and ice emissivity minima are distinct, separable
- Grain size can be established (confounding effects from mixing)

More details...Ben?

Ice vs. Silicate in Atmospheric Dust, Mars (Smith et al. 2000)

Ice Monitoring Earth (Hori et al., 2006, RSE)
Discriminating Hydrogen and Deuterium

- Detectable HDO/H$_2$O ratios with range from a few ppt in crystalline ice to a few % for amorphous samples.
- Dependence of the band shape on temperature complicates the interpretation.

3.125 µm

More details...other workshoppers?
What do we want to know?

- **Where** is the H$_2$O(ice,bound)/OH? (Where is each?)
- **How much?** (and how much variation?)
- **What else** is there (regolith, H$_2$S, NH$_3$, etc.)?
- **What is the isotopic ratio?**
Possible Lunar Volatiles Mission Approaches with IR

• Elliptical orbiter, including NIR reflectance (possibly with own illumination source) + multi-band imager and/or spectrometer
 – Possibly for this to be small, low-cost (passive)
 – Or, more advanced active light source to reduce difficulty with SNR

• Rover to explore spatial distribution and shallow depths, including IR mast- or arm-mounted imager/spectrometer

• Lander to core regolith, including IR mast-mounted imager/spectrometer and onboard laboratory
From Orbit: Active vs. Passive

- Some numbers from Paul and Glenn
Extras
Fig. 16. Spectra of frost growth on Mauna Kea red cinder, showing a decrease at shorter wavelengths even when there is a thick water frost layer and the 1.5- and 2.0-μm frost bands are very prominent. The frost depths are 0.0 (sample A), 0.05 (sample B), 0.1 (sample C), 0.2 (sample D), 0.3 (sample E), and 0.6 mm (sample F). The frost grain size is less than 30 μm, and the red cinder grain size was ≤125 μm.
Water on Surfaces

Anderson & Wickersheim, 1964

Fig. 3. Schematic picture of a partially hydrated silica surface.