Planetary Interiors and Magnetic Fields: State of the Field and Open Questions

Leslie Rogers
Hubble Fellow
California Institute of Technology
larogers@caltech.edu

KISS Workshop – August 12, 2013
Main Takeaway Points

• The observed properties of exoplanets show a wide range of diversity.

• Inferences about exoplanet interiors from current observations are fraught with degeneracies.

• Measurements of exoplanet magnetic fields would yield additional constraints on interior models.
Main Takeaway Points

• The observed properties of exoplanets show a wide range of diversity.

• Inferences about exoplanet interiors from current observations are fraught with degeneracies.

• Measurements of exoplanet magnetic fields would yield additional constraints on interior models.
Planets Detected both Dynamically and in Transit are Valuable!

Stellar Wobble

Transits

Planet Mass

Planet Radius

Planet Density
Planet Mass-Radius Diagram

Seager et al. (2007) M-R Relations
Adding Incident Flux Dimension

Seager et al. (2007) M-R Relations
Seager et al. (2007) M-R Relations
Planet Mass-Radius Diagram

Seager et al. (2007) M-R Relations
Planet Mass-Radius Diagram

Seager et al. (2007) M-R Relations
Seager et al. (2007) M-R Relations
Main Takeaway Points

- The observed properties of exoplanets show a wide range of diversity.

- Inferences about exoplanet interiors from current observations are fraught with degeneracies.

- Measurements of exoplanet magnetic fields would yield additional constraints on interior models.
Model Overview

\[
\frac{dr}{dm} = \frac{1}{4\pi r^2 \rho}
\]

\[
\frac{dP}{dm} = -\frac{Gm}{4\pi r^4}
\]

\[
\frac{d\tau}{dm} = \frac{\kappa}{4\pi r^2}
\]

\[
\rho = \rho(P, T)
\]
Planet Mass-Radius Diagram

GJ 1214b

- $M_p = 6.6 \, M_\oplus$
- $R_p = 2.7 \, R_\oplus$
- $\rho_p = 1870 \, \text{kg m}^{-3}$
- $P_{\text{orb}} = 1.6 \, \text{days}$
- $T_{\text{eq}} = 550 \, \text{K}$

Seager et al. (2007) M-R Relations
Three Possible Composition Scenarios

Case I: Gas & Ice & Rock

- Gas layer dominated by H/He from the nebula
- Smaller H/He envelope than Neptune (in proportion to planet mass).
- Requires 10^{-4} to 6.8% H/He by mass

Mini Neptune Scenario

Case II: Ice & Rock only

- Gas layer dominated by sublimated vapor
- Phases in the envelope: vapor-superfluid-plasma
- Requires at least 47% H$_2$O by mass

Water Planet Scenario

Case III: Rock only

- Gas layer dominated by outgassing
- Outgassed atmosphere must be hydrogen-rich (like that outgassed by ordinary H, L, LL and high iron enstatite EH chondrites).

Rocky Super Earth

Rogers & Seager (2010b)
GJ1214b Transmission Spectroscopy
GJ1214b Transmission Spectroscopy

\[H_R = \frac{kT}{m_{ave}g} \]
GJ1214b Transmission Spectroscopy

Berta et al. (2012)
Main Takeaway Points

• The observed properties of exoplanets show a wide range of diversity.

• Inferences about exoplanet interiors from current observations are fraught with degeneracies.

• Measurements of exoplanet magnetic fields would yield additional constraints on interior models.
Water Phase Diagram

French et al. (2009)
Chau et al. (2010)
Fig Credit: Tian & Stanley (2013)
Thickness of Potential Dynamo Generating Layer
Main Takeaway Points

• The observed properties of exoplanets show a wide range of diversity.

• Inferences about exoplanet interiors from current observations are fraught with degeneracies.

• Measurements of exoplanet magnetic fields would yield additional constraints on interior models.