Atmospheric Dynamics: Martian Climate History

Michael A. Mischna Jet Propulsion Laboratory California Institute of Technology

7 December 2015 Methane on Mars KISS Workshop

Mars Atmospheric Dynamics

Outline

- Discussion geared towards the scientist/engineer who is *familiar* with physical principles, but perhaps *unfamiliar* with properties of the martian atmosphere/atmospheric circulation.
- A slant towards how the atmosphere influences methane production, transport, decay.
- We will address:
 - Temperature
 - Pressure
 - Winds
 - Dust

Comparing Mars and Earth Environments

	Earth	Mars
Composition	78% N ₂ 21% O ₂	95% CO ₂
Atmospheric Water	1-4%	Virtually none
Surface pressure	1 atm.	~0.01 atm.
Surface temperature	-85 to 57ºC	-128 to 27ºC
Polar Caps	Yes	Yes
Days in Year	365	669

EARTH VS. MARS WEATHER

EARTH VS. MARS WEATHER

Surface Pressure

Because of the distance from the Sun, and Mars' atmospheric composition, the atmosphere itself freezes out.

This causes substantial variations in martian surface pressure over the course of a year.

Surface Pressure

REMS data through sol 938, from G. Martinez

Energy which drives circulation comes from the Sun

- Absorption in atmosphere (gas/dust)
- Absorption by surface
- Re-radiation from surface/atmosphere
- Dust scattering
- Latent heat at poles

Temperature

Turbulence

Energy at small scales is turbulent energy.

Think of this as convective energy

Zonal Average Temperatures

from Smith et al., (1999)

Global Circulation

Hadley Circulation

- Thermally direct overturning circulation
- Imbalance of heating at equator and high latitudes
- Similar to Earth

Global Circulation

Local Circulation

Modifiers of general circulation

- Topography
- Thermal contrast (poles, albedo/TI variations)
- Dust
- Topography is responsible for generating waves in the atmosphere, and restricting some wind patterns

Slope winds

- Driven on many different scales
- Familiar to us on Earth, upslope/downslope winds
- Buoyant air ascends, dense air descends

Local Circulation

• Thermal Contrast Winds

- Similar in nature to slope winds
- Also familiar to us, land/sea breezes
- On Mars, driven by albedo/TI differences
- Polar cap edge winds

Atmospheric Dust

Atmospheric Dust

- At larger scales, most major <u>circulation components</u> <u>are strengthened</u> by increased dust loading in the atmosphere
 - e.g. Hadley circulation
- Circulations forced by solar heating of the ground are generally weakened due to the <u>reduction in insolation</u> at the ground
 - e.g. diurnal slope flows, cap edge circulation, boundary layer convection

Summary (Pt 1)

Temperature

- Largely controlled by surface absorption/re-radiation
- Diurnal cycle (stable vs. unstable); mixing

Pressure

Seasonal condensation cycle, non-condensable enrichment

Dust

- Affects strength of global circulation
- Potential chemistry effects (not discussed here)

• Wind

- Multiple scales
- Globally mixes in ~30 days
- Global circulation strongly affected by local conditions

Mars Climate History

Introduction

- Geological and geochemical evidence points to a vastly different, early climate on Mars.
 - Fluvial features (rivers, channels, shorelines, aqueous signatures) suggest a planet warmer and wetter than present
 - An atmosphere of 100's mb pressure
 - Temperatures near or above melting point of water
- What happened?

Introduction

- Early Mars atmosphere had to be thicker
 - Liquid water has pressure *and* temperature constraints
- Early solar luminosity was ~25% lower than present
 - Starting from a colder place
- The "Faint Young Sun" paradox
- Can it be reconciled?

CO₂ Atmosphere

- First Attempt (circa 1980s)
- Thick CO₂ atmosphere (1-5 bar)
- Assumes reduced solar luminosity (75%)
 - Comparatively easy to reach 273 K at present solar luminosity.

CO₂ Atmosphere

- Add enough CO₂ to make the planet warm (~5 bar)
- But CO₂ will saturate at pressures lower than this.
- Furthermore...as surface pressure increases, planetary albedo rises due to atmospheric scattering (planet gets "brighter")

In other words, CO₂ is not always a greenhouse warmer.

Trace Gases

- Still assume CO₂ was abundant long ago.
- Trace greenhouse species
 - NH_3 , SO_2 , CH_4 , H_2S , H_2O , etc.
- Each has drawbacks
 - Solubility
 - Redox chemistry
 - Photochemical lifetime
 - Abundance
 - Etc...

Trace Gases

500 mb CO₂ only

500 mb CO₂

 $+ SO_2$

500 mb CO_2 + saturated atm.

500 mb CO_2 + SO_2 + saturated atm.

Annual average surface temperatures

from Mischna et al., (2013)

Trace Gases

- Greenhouse warming due to CIA by H₂ with CO₂.
- Significant only for background atmospheres > ~500 mb.
- Requires 10% H₂ atmosphere and saturated atmosphere

work by Ramirez et al. (2014)

Clouds

 Carbon dioxide ice clouds can be effective scatterers of upwelling IR.

An alternative idea to greenhouse gases

from Forget and Pierrehumbert (1997)

Cloud Cover

• Water ice clouds can also act as warming agents in the atmosphere.

More cloud / Higher cloud / Bigger cloud particles / More warming

• Even CO₂ ice clouds can be warming agents from IR scattering

Impact Warming

- Impact-induced warming:
 - Introduction of significant heat and water to the climate system
- Big impactors (10's km)
 - Smaller impactors have negligible influence
 - Results in global influence
- Large impacts occur with less frequency later in Mars history

Impact Warming

- Impact climate change is <u>not</u> local
 - These are large impacts (~Hellas-forming size)
 - Precipitation could/would be global

- Cratering history limitation on how late in geological time such climate change could be
 - Large impacts occur with less frequency later in Mars history, largely restricting this to early times

Sputtering / Photochemical Escape

- Sputtering and moderate carbonate formation act as the decay process.
- Requires <1 bar CO_2 initially.
- Probably <100 mb since ~3 Ga
- Mostly cold and dry throughout history

Orbital Change

Orbitally driven climate change

- Obliquity
- Eccentricity
- Perihelion
- Does not modify overall global insolation
 - Only modest change to surface pressure
 - Primary effect is to water cycle/redistribution of surface ice

Orbital Change

 Rise in obliquity moves ice to tropics → increase in planetary albedo

 Change in eccentricity/precession phasing can control cloud distribution and polar cap size

As obliquity approaches zero, atmosphere will collapse at poles

Alternatives to pure water melt

Kieserite (MgSO₄ •H₂O) Polyhydrated sulfates (e.g. MgSO₄ •7H₂O) Gypsum (CaSO₄•2H₂O) Other hydrates

Gendrin et al. (2005)

Summary (Pt 2)

- Geochemical and geological evidence suggests a wet early Mars
- Need to significantly warm early Mars (FYS paradox)
- Many mechanisms have been proposed, none wholly satisfactorily
 - Sulfur species, methane, water vapor,
 - CO_2/H_2O ice clouds
 - Impacts?
 - Brines
- Most prevailing theories estimate 100's mb initially