Ocean-Ice Interactions: A Cryospheric Perspective

Tony Payne

a.j.payne@bristol.ac.uk

Steph Cornford, Rupert Gladstone and Dan Martin (LLNL)
Outline

• Evidence of cryospheric response to oceans
 • The Marine Ice Sheet Instability
 • Flowline modelling of Pine Island Glacier
 • Development and testing of an adaptive mesh model and application to PIG
 • Application to West Antarctica: initialization and climate forcing
Components of an ice sheet

- slow-flowing interior (~10 m/yr)
- fast-flowing ice streams (>500 m/yr)
- floating ice shelves
- grounding line
Ice streams and outlet glaciers

- sections of fast flowing ice ~50 km wide
- now thought to be crucial in dynamics of ice sheets

KISS short course Sept. 2013
Antarctic ice-sheet loss driven by basal melting of ice shelves

H. D. Pritchard1, S. R. M. Ligtenberg2, H. A. Fricker3, D. G. Vaughan1, M. R. van den Broeke2 & L. Padman4
Larsen ice shelves

- collapse of ice shelf A in 1995 and B in 2002
- meltwater-driven fracture understood

MacAyeal and others 2003

KISS short course Sept. 2013
Larsen ice shelves

- minimal direct effect, however glaciers accelerated after collapse
- natural experiment testing link between floating and grounded ice

Rignot 2004
Scambos and others 2004
Grounding line retreat

Fast Recession of a West Antarctic Glacier

E. J. Rignot

KISS short course Sept. 2013

Slide number 8/37
Inland thinning of the Amundsen Sea sector, West Antarctica

Andrew Shepherd, Duncan J. Wingham, and Justin A. D. Mansley

Links GL retreat to mass loss

Suggests that mass loss is limited to ice streams

KISS short course Sept. 2013
Thinning is caused by increased ice flow

KISS short course Sept. 2013
Accelerating response

Thinning rates increased fourfold.
Accelerating response

• Jenkins and others (2010) identify a bedrock ridge under the ice shelf ~40 km from the current grounding line

• observed GL retreat rates consistent with GL occupying ridge in mid 1990s

• Retreat has been consistent since 1990s and accelerated through 2000s - 0.95 ±0.09 km/yr with peak 2.8 ± 0.7 km/yr

Park and others (2013)
Outline

• Evidence of cryospheric response to oceans
• The Marine Ice Sheet Instability
• Flowline modelling of Pine Island Glacier
• Development and testing of an adaptive mesh model and application to PIG
• Application to West Antarctica: initialization and climate forcing
Marine ice-sheet instability

KISS short course Sept. 2013
West Antarctic ice sheet and CO$_2$ greenhouse effect: a threat of disaster

J. H. Mercer

The Weak Underbelly of the West Antarctic Ice-Sheet

Terence J. Hughes
University of Maine - Main, terry.hughes@maine.edu

Cross-section through West Antarctica

KISS short course Sept. 2013

Slide number 15/37
Ice sheet grounding line dynamics: Steady states, stability, and hysteresis

Christian Schoof

flux across GL sharply increasing function of thickness – basic ingredient for marine ice sheet instability

$q \propto H^5$

KISS short course Sept. 2013 Slide number 16/37
Faunal evidence for a late quaternary trans-Antarctic seaway

DAVID K. A. BARNES and CLAUS-DIETER HILLENBRAND
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK

Genomics of bryozoans (sedentary organisms)

KISS short course Sept. 2013

Slide number 17/37
Evolution of the steady grounding line position as a function of the horizontal mesh extension. Black circles (gray circles) represent results obtained for simulations on the outward (return) path. Dashed line depicts results obtained by boundary layer theory (Durand et al., 2009)

- Durand et al., 2009, JGR
- Significant deviation from boundary layer theory
- No physical neutral equilibrium
Outline

• Evidence of cryospheric response to oceans
• The Marine Ice Sheet Instability
• Flowline modelling of Pine Island Glacier
• Development and testing of an adaptive mesh model and application to PIG
• Application to West Antarctica: initialization and climate forcing
Flowline modelling of PIG

• Aim to use simple model of PIG to investigate behaviour from 1900 to 2200

• The model is cheap to run so that fine resolution is not an issue

• Also means 1000s experiments are possible so that can use ensembles to assess effects of parameter uncertainty

• Joughin et al (2010) use a 2-d. version of the model and find limited GL retreat
Melt model

- Box model of sub-shelf processes used to generate mean melt rates (Olbers and Hellmer 2010)
- Temperature and salinity conserved; 3-equation melt model; fluxes found as a function of density differences
- Means in two sub-shelf boxes used to constrain empirical relation developed by Walker and others (2008)
- Generates high melt rates close to GL as suggested by observations
A rate factor (a measure of how easily deformable the ice is, determined by temperature).

Minimax Latin Hypercube sampling was used to obtain 5000 combinations of these inputs (i.e. we ran an ensemble of 5000 simulations).

Table: Input Values

<table>
<thead>
<tr>
<th>Input name</th>
<th>Units</th>
<th>Min. value</th>
<th>Max. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pa$^{-3}$ yr$^{-1}$</td>
<td>3.1×10^{-18}</td>
<td>1.7×10^{-16}</td>
</tr>
<tr>
<td>C_{MB1}</td>
<td>m yr$^{-1}$</td>
<td>0.5</td>
<td>5.0</td>
</tr>
<tr>
<td>C_{MB2}</td>
<td>m yr$^{-1}$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C_{B21}</td>
<td>Pa s m$^{-1}$</td>
<td>1×10^8</td>
<td>5×10^9</td>
</tr>
<tr>
<td>C_{B22}</td>
<td>Pa s m$^{-1}$</td>
<td>0</td>
<td>1×10^{10}</td>
</tr>
<tr>
<td>W</td>
<td>km</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>C_H</td>
<td></td>
<td>0.9</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Two parameters jointly determine the “surface” mass balance profile (includes a contribution from tributaries).

Two parameters determine the profile of basal traction coefficient.

A lateral drag parameterisation is used with channel width W.

One parameter allows the initial (year 1900) thickness profile to vary.
Results

• Likelihood procedure to accept or reject members based on fit to observed thinning, grounding line positions and velocity

• Grey are rejected; blue to red reduced discrepancy
Outline

• Evidence of cryospheric response to oceans
• The Marine Ice Sheet Instability
• Flowline modelling of Pine Island Glacier
• Development and testing of an adaptive mesh model and application to PIG
• Application to West Antarctica: initialization and climate forcing
Bisicles ice sheet model

- Specifically designed for GL problems
- Based on CHOMBO adaptive-mesh refinement developed by Lawrence Livermore National Lab.
- Uses a vertically-integrated form of the stress equations proposed by Schoof and Hindmarsh (2010) known as L1L2
- Includes all stress terms but is vertically integrated
- CHOMBO ensures conservation between grids and offers massive parallelization

KISS short course Sept. 2013
BISICLES

- Trial application to Pine Island Glacier
- Simulation using reasonable melt increase of 50 m/yr
- Results dependent on resolution from single level (5km) to six levels (~150 m)
- Confirms need for sub-km resolution

Colours refer to velocity
See movies
Outline

- Evidence of cryospheric response to oceans
- The Marine Ice Sheet Instability
- Flowline modelling of Pine Island Glacier
- Development and testing of an adaptive mesh model and application to PIG
- Application to West Antarctica: initialization and climate forcing
Experimental design

• Coupled problem but no such coupled model exists
• Use a chain of models from global AOGCMs → regional ocean and atmosphere models → ice sheet model
• Connelly and Bracewell (2007) show HadCM3 and ECHAM5 to do well for Antarctica
• Consider only West Antarctica
Experimental design

SRES scenarios A1B and E1 with AOGCMS
- HadCM3
- ECHAM5

Snowfall - regional atmospheric modelling
- RACMO2 (Utrecht)
- LMDZ4 (Grenoble)

Melt - regional ocean modelling
- BRIOS (AWI)
- FESOM (AWI)

Anomalies against 1980 to 1989

BISICLES ice sheet model
Regional Southern Ocean model forced using AOGCM output.
Ocean forcing – major ice shelves

- Warm water intrusion reported by Hellmer and others (2012) for BRIOS also in FESOM for Ronne-Filchner
- Leads to 10-20 fold increase in melt
- Similar phenomenon for Ross ice shelf after 2100 (FESOM only)
Ocean forcing – smaller ice shelves

- FESOM and BRIOS do not represent smaller shelves well
- Use index of coastal warming and convert to melt anomaly using empirical relation (e.g., Jacobs and Rignot 2002)
- Warming of 1 to 2 °C or 10-20 m/yr
Results

Background is the initial velocity field

KEY -

1980 ground line

Worst case by 2200

Control (no anomalies) shows some drift

KISS short course Sept. 2013
Amundsen Sea and Pine Island

- Deglaciation of Pine Island Glacier and Smith Glaciers
- Thwaites shows no retreat related to lack of buttressing?
- Similar to recent GL observations

[Graph showing mass gain above flotation and eustatic sea level rise over time, with model predictions indicated.

Map showing Pine Island Glacier, Thwaites Glacier, and Smith Glacier with a color gradient representing sea level rise.]

Slide Number 35/37
See movies
Summary

• Increased outflow is enough to compensate increased snowfall
• Sea level rise is predicted as -5 to 80 mm by 2200 depending on forcing (i.e., small)
• Sea level rise is limited because
 • GL retreat occurs late in the model run (c.f. ocean forcing)
 • Areas that retreat do not have much ice above buoyancy (so little effect or SLR) and/or
 • Large retreat limited to narrow channels (e.g., Pine Island)
• Sea level rise appears to continue to increase beyond 2200
• Omits East Antarctica
• Fuller estimate requires coupling to regional ocean model
Antarctic mass balance

- interior thickening related to changes in snowfall
- coastal thinning in WAIS (Pine Island, Smith and Thwaites Glaciers) and EAIS (Cook and Totten Glaciers)
- close correspondence to ice velocity (ice streams)

Shepherd and Wingham 2007
Pritchard and others 2009
Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans

Antony J. Payne, Andreas Vieli, Andrew P. Shepherd, Duncan J. Wingham, and Eric Rignot

Demonstrated that GL retreat, flow acceleration and thinning all linked and caused by increased ice shelf melt
Initial conditions

- Observed ice sheet geometry
- Use methods based on Lagrange multipliers to find ice viscosity and basal traction consistent with observed velocities
- Evolve ice sheet for 50 years to allow noise to relax away
- Employ 3 levels of refinement from 5 km to 612 m