Resistive superconducting films for photonsensing devices

conventional superconductivity in ‘bad metals’

Teun Klapwijk, Kavli Institute of Nanoscience, Delft

Thanks to the members of my group at Delft and my collaborators at SRON
Electrodynamics of the superconductor

Recombination rates; disorder dependent

\[
\frac{\tau_0}{\tau_r(\Delta)} = \sqrt{\pi} \left(\frac{2\Delta}{kT_c} \right)^{5/2} \sqrt{\frac{T}{T_c}} e^{-\Delta/kT} = \frac{(2\Delta)^2}{(kT_c)^3} \frac{\tau_{qp}}{2N^a(0)}
\]

R. Barends et al, PRL 100, 257002 (2008); PRB 79, 020509 (2009)
Power dependence quality factor

NbTiN

$\langle n_{\text{photons}} \rangle$

$T_{\text{bath}} = 310 \text{ mK}$
Materials in use NbN, NbTiN, TiN

- **Hot-electron bolometers** (HEB’s): 4 nm thick, $R=100\,\Omega/sq$, $\rho=250\,\mu\Omega cm$
- **Superconducting single photon detectors** (SSPD’s): >4 nm thick, $R\leq100\,\Omega/sq$, $\rho\leq250\,\mu\Omega cm$, narrow: 90 nm; uniformity
- **Microwave kinetic inductance detectors** (MKIDs): Al, Ta, Nb, NbN, NbTiN, TiN, in search of optimal parameters: 60 nm thick, $R=10\,\Omega/sq$, $\rho=100\,\mu\Omega cm$, uniformity

Conventional superconductivity in ‘bad metals’
Superconductor single-electron detector

Lupascu et al, arXiv; Rosticher et al, to be publ.
Spatial pattern of optical and electron QE in NbN and NbTiN

Dorenbos et al, APL 93, 131101(2008): NbTiN

Rosticher et al, to be published
Thin NbN films and quench-condensed films; superconductor-insulator transition

- Disorder driven
- Magnetic field driven

Su et al., SST 9, A152 (1996)
Haviland, Jaeger, Goldman, 1986/1989
Superconductor differs from a resistive metal!!

- Electron temperature vs distribution function
- Resistance *not* simply due to single-electron backscattering processes, but:
 - Current conversion processes (static)
 - Phase-slip/flux-flow (dynamic)

Microwave impedance????

TU Delft
Resistance of a NSN structure: static resistance of S (temperature close to Tc)

Boogaard et al, 2004?
Electrodynamics of superconducting thin films

\[k_F l = 1 \]

\[\sigma = 2e^2 N(0) D \]

- Localization: D
- Correlations: N(0)

\[
\frac{\sigma_1}{\sigma_N} = \frac{2}{\hbar \omega} \int_\Delta \left[f(E) - f(E + \hbar \omega) \right] g_1(E) dE \\
+ \frac{1}{\hbar \omega} \int_{-\Delta}^{\Delta} \left[1 - 2f(E + \hbar \omega) \right] g_1(E) dE \\
\frac{\sigma_2}{\sigma_N} = \frac{1}{\hbar \omega} \int_\Delta \left[1 - 2f(E + \hbar \omega) \right] g_2(E) dE
\]

\[g_1(E) = \left(1 + \frac{\Delta^2}{E(E + \hbar \omega)} \right) N_S(E) N_S(E + \hbar \omega) \]

\[g_2(E) = \frac{E(E + \hbar \omega) + \Delta^2}{\sqrt{(E + \hbar \omega)^2 - \Delta^2 \sqrt{\Delta^2 - E^2}}} = -ig_1(E) \]

\[\Gamma = 17 \, \mu eV \]

E to E + i\Gamma

Dynes broadening parameter
Good quality NbN: too much surface resistance
Macroscopic quantum state

\[\psi = |\psi| e^{i\varphi}\]

\[|\psi| = \sqrt{n_s}\]

\[j_s \propto \nabla \varphi\]

\[\frac{\partial \varphi}{\partial t} = \frac{2eV}{\hbar}\]
Vortex core on the scale of ξ and circulating current

$$B(r) = \frac{\Phi_0}{2\pi \lambda^2} K_0 \left(\frac{r}{\lambda} \right) \approx \sqrt{\frac{\lambda}{r}} \exp \left(-\frac{r}{\lambda} \right),$$

Rainer et al, PRB 1996
Dynamics of flux flow

\[\frac{\partial \varphi}{\partial t} = \frac{2eV}{\hbar} \]
Berezinskii-Kosterlitz-Thouless transition in 2D superconducting films

\[\lambda_\perp = 1.78 \frac{\Phi_0^2}{4\pi^5} \frac{e^2}{\hbar k_B T_\infty} \frac{R_\square}{f^{-1}\left(\frac{T}{T_\infty}\right)} \]

\[\frac{T_{KT}}{T_\infty} f^{-1}\left(\frac{T_{KT}}{T_\infty}\right) = 2.18 \frac{R_\square}{R_c} \]

\[k_B T_{KT} = \frac{1}{2\pi \hbar^2 n_s^{2D}} \frac{m^*}{m} \]

\[\begin{cases} \frac{\Delta(T)}{\Delta(0)} \tanh \left[\frac{\beta \Delta(T)}{2} \right] \\ \end{cases} \]
Coulomb blockade and Josephson coupling

\[H \sim \frac{1}{2} \sum_{i,j} Q_i C_{ij}^{-1} Q_j - \frac{E_J}{2} \sum_{\langle i,j \rangle} (\phi_i - \phi_j)^2 \]

\[\frac{d\phi_i}{dt} = \frac{2e}{\hbar} V_i = \frac{2e}{\hbar} C_{ij}^{-1} Q_j \]

\[H = H_{ch} + H_J \]

\[= \frac{1}{2} \sum_{i,j} (Q_i - Q_{x,j}) C_{ij}^{-1} (Q_j - Q_{x,j}) - E_J \sum_{\langle i,j \rangle} \cos(\phi_i - \phi_j - A_{ij}) \]
Three competing processes

\[
\sigma = 2e^2 N(0) D
\]

1. Disorder: quantum coherent elastic scattering: localization
2. Electron-correlations: opening of a Coulomb gap
3. Superconducting correlations

- Superconducting state disappears by decrease of *amplitude*
- Superconducting state disappears by *phase fluctuations*
Evolution in time

Josephson coupled

Coulomb coupled
Dissipation in electromagnetic environment

Rimberg et al, PRL 78, 2632 (1997)
Example N(0): superconductor-metal-insulator transition: Nb(x)Si(1-x)

Bishop, Dynes et al, 1983/1985
Disordered superconducting films: intrinsic inhomogeneous pair-density

- Localization: electrons get ‘trapped’
- Correlations: reduction in density of states at Fermi level
- Superconducting correlations

\[T_c = \frac{\hbar}{\tau_s} \left[\frac{\sqrt{2\pi g} - \ln(\hbar / T_{c0} \tau_s)}{\sqrt{2\pi g} - \ln(\hbar / T_{c0} \tau_s)} \right]^{\sqrt{2\pi g}/2} \]

Density of states: bandstructure calculations; combined electronic structure and many-body approach.

Crystalline?

\[a = 7.65a_0 = 0.4 \text{ nm} \]

Allmaier et al, PRB 79, 235126 (2009)
Mott correlation gap in ordered TiN

Our results suggest that TiN is a peculiar metal with a pseudogap at the Fermi level, indicating the proximity to a metal-insulator transition. In our calculations the pseudogap regime is best described for a value of $U=8.5$ eV for the Coulomb interaction.

Consequences for superconductivity?
Summary

- NbTiN and TiN have quality factors over 1 M
- These superconductors are ‘bad metals’
- Superconducting properties may be non-uniform
- Surface resistance in good quality NbN might be an indication
- Dynes parameter in Mattis-Bardeen might signal the same
- However, the films might be well-ordered.
Thermally activated phase slip (1 dimension)

$$\left| \psi(x) \right|^2 \frac{d\varphi}{dx} = \text{constant} \propto I$$

$$\Delta F_0 = \frac{8\sqrt{2}}{3} \frac{H_c^2}{8\pi} A\xi$$

$$\delta F = \Delta F_- - \Delta F_+ = \frac{\hbar}{2e} I$$

$$\frac{d\varphi_{12}}{dt} = \Omega [\exp(-\frac{\Delta F_0 - \delta F/2}{kT}) - \exp(-\frac{\Delta F_0 + \delta F/2}{kT})] = 2\Omega e^{-\Delta F_0/kT} \sinh \frac{\delta F}{2kT}$$
Superconductor-insulator transition

- Phase-coherence: phase-fluctuations
- Disorder
- Coulomb interactions: electron-electron interactions
- Berezinskii-Kosterlitz-Thouless vortices: flux flow
- Anderson-localization
- Mott-insulator

\[\frac{\partial \varphi}{\partial t} = \frac{2eV}{\hbar} \]
Conclusions

• Superconductors at these 100 mK temperatures with so few qp’s are poorly explored territory

• Nonuniformity which is not microstructure related?

• Characterization might provide interesting data relevant outside the engineering community

• Example: why does T_c decrease so nicely with N-content in TiN?

\[
T_c = \frac{h}{\tau^*} \left[\frac{\sqrt{2\pi g} - \ln(h/T_c \tau^*)}{\sqrt{2\pi g} - \ln(h/T_c0 \tau^*)} \right]^{\sqrt{\pi g}/2}
\]