Implementing a Near-Optimal Optical Receiver for Interplanetary Communications

Tim Rambo

Advisor: Prem Kumar

Center for Photonic Communication and Computing
EECS Department, Northwestern University

NASA
Overview

• Spatial Encoding Joint Detection Receiver (JDR)

• Temporal Encoding JDR

• Ultrafast Coherent All-Optical Switching

• Receiver Architecture
Overview

• Spatial Encoding Joint Detection Receiver (JDR)

• Temporal Encoding JDR

• Ultrafast Coherent All-Optical Switching

• Receiver Architecture
Photon Information Efficiency (PIE)

Performance of the BPSK Hadamard code with the Green Machine JDR: exceed the single-symbol receiver PIE
Approaching The Holevo Limit

JDR architecture which improves efficiency for low-light level signals.

Simple design

No feed-forward required

\[|\alpha|^2 \ll 1 \]

Coherent state signals

DPSK Hadamard Code

PPM code

Approaching The Holevo Limit
Approaching The Holevo Limit
Issues With Multiple Spatial Modes

Non-uniform phase accumulation over channels

Overlap of spatial modes after long propagation distance
Single Spatial Mode Transmission

Uniform Phase Accumulation,

For Sufficiently Small Blocks of Temporally Encoded Data
Overview

- Spatial Encoding Joint Detection Receiver (JDR)
- Temporal Encoding JDR
- Ultrafast Coherent All-Optical Switching
- Receiver Architecture
Bitwise Binary Switch

Selecting individual temporal modes

\[S^{(n)}(t) : \text{alters switching behavior} \]

\[\text{In}_0 \rightarrow \text{Out}_0 \quad \text{In}_0 \rightarrow \text{Out}_1 \]
Bitwise Binary Switching
Bitwise Mode Interference
Bitwise Mode Interference
Bitwise Mode Interference

1 detector, \(N \) switches, \(N \) beamsplitters

Requirements for switching device

- low loss
- low in-band noise
- high speed
Overview

- Spatial Encoding Joint Detection Receiver (JDR)
- Temporal Encoding JDR
- Ultrafast Coherent All-Optical Switching
- Receiver Architecture
All-Optical Coherent Switch

Temporal modes

Control Pump Out

In₀ → Circ → Out₀

Control Pump In

In₁ → Circ → Out₁

Oza et al., Frontiers in Optics, FThL7 (2011)
Patel et al., IEEE Summer Topical Meeting Series p 16-17, July 2011
Switch Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching Rep Rate</td>
<td>1 GHz 50 MHz</td>
</tr>
<tr>
<td>Switching Window</td>
<td>30ps</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>0.5 dB</td>
</tr>
<tr>
<td>In Band Noise</td>
<td>$\leq 10^{-4}$ Photons/Pulse</td>
</tr>
</tbody>
</table>
Overview

- Spatial Encoding Joint Detection Receiver (JDR)
- Temporal Encoding JDR
- Ultrafast Coherent All-Optical Switching
- Receiver Architecture
Bitwise Optical Switching

Bitwise switching can be realized...

by appropriately modulating the control pulses
Bitwise Mode Interference

The temporal JDR…

can be constructed from these optical switches
Acknowledgements

Special Thanks To:

Prem Kumar

Joe Altepeter

Neal Oza

Thanks For Listening