Optimizing Satellite Operations: Near-Earth to Interplanetary Missions

Sara Spangelo (saracs@umich.edu), University of Michigan

Modeling

Analytic models capture:
1) orbit, link, and vehicle dynamics
2) payload and download decisions
3) mission constraints and objectives

Toolkits enable the analysis of opportunities for energy collection, experiments, and downloads. The plots above show the dynamic distances (top) and data rates (bottom) for the Phobos mission.

Example Interplanetary Application: Phobos Lander Science Mission

We've applied our models, analysis, and optimization work to an example interplanetary mission: a small Phobos lander. The schematic (left) shows the mission architecture. Two diverse communication architectures were compared, see the analysis (above) and optimization results (right).

Diverse optimization techniques are used to develop schedules, perform sensitivity analysis, and explore the design space. The plots above show optimal solutions (top) and sensitivities (bottom) for the Phobos mission.

This work focuses on the modeling, analysis, and optimization of near-Earth and interplanetary space networks. The objective is to maximize the data transferred between communication nodes subject to realistic constraints, such as opportunities, subsystem and state interactions, and dynamic communication links. Ongoing work takes into account the stochasticity of space operations and communication systems.

Analytic models capture:
1) orbit, link, and vehicle dynamics
2) payload and download decisions
3) mission constraints and objectives

Analysis

Dynamic Rate
Constant Rate, 16 kbps
Constant Rate, 64 kbps
Constant Rate, 128 kbps
Constant Rate, 160 kbps
Constant Rate, 224 kbps
Constant Rate, 288 kbps

LEO Missions

Past work optimized Low Earth Orbit (LEO) missions and Earth-based networks.

Optimization

DSN
Phobos
Lander
ExoMars
Mars

Power system (solar panels, battery)
Communication (radios, antennae)
Payload (instruments)

Payload (instruments)
Communication (radios, antennae)
Power system (solar panels, battery)

Example Interplanetary Application: Phobos Lander Science Mission

We've applied our models, analysis, and optimization work to an example interplanetary mission: a small Phobos lander. The schematic (left) shows the mission architecture. Two diverse communication architectures were compared, see the analysis (above) and optimization results (right).

Diverse optimization techniques are used to develop schedules, perform sensitivity analysis, and explore the design space. The plots above show optimal solutions (top) and sensitivities (bottom) for the Phobos mission.