Potential of Very High Resolution Optical Images for geometric change detection

Renaud Binet
CEA - French Atomic Agency
Département Analyse et Surveillance de l’Environnement
Laboratoire de Détection et de Géophysique
renaud.binet@cea.fr
VHR images characteristics

- Over 10 satellites in the close future
 - Geoeye, Worldview (2), Quickbird, Ikonos, Eros (3), Orbview, Pleiades (2), etc...
- Resolution better than 1m (Pleiades: 0.7m resampled to 0.5m)
- Time revisit: 1-3 days @ +/- 30° incidence angle
- Small swath: ~10 km
 - But possibility to acquire an image mosaic in the same track
- In-track stereo capability
- Tricky acquisition geometry: pushbroom Time Delayed Integration sensor with pitch and yaw satellite driving
- High cost (15-20$/km2)
Potential for ground deformation measurements

- Horizontal deformations
 - Enhanced sensitivity: $\frac{1}{10}$ pixel = 5cm!
 - Main limitations: no control on incidence angle

- Vertical changes
 - Very high spatial resolution differential DEM
 - No radiometric temporal coherence needed
 - Actual accuracy of DEM (in urban landscape): ~1m. What if sub-pixel measurements are applied to non-urban landscape?
DEM biases issue

- The Bam 2003 earthquake as seen by SPOT-5 (2.5 m)
- EW offset biases due to unknown height of palm trees
DEM biases characteristics

- DEM offset biases
 - Are proportional to Base/Height (B/H) ratio
 - Occur only in the epipolar direction
- Ex: 20m height error + B/H = 0.05 (3°) = 1m offset bias
- Solutions
 - Process only image pairs with very low B/H ratio
 - Compute a precise DEM with high B/H ratio
 - Compute only offsets in the orthogonal epipolar direction
 - ?
QuickBird Bam offsets

Perp-epipolar component

Offset direction

No DEM correlated biases
Satellite jitter: up to 2m
CCD discontinuities

QBird poor image sampling quality:
Correlation accuracy: ~ 1/3 pixel
= ~20cm = SPOT 5 accuracy

But independant measurements X16!

Increased SNR and spatial sampling

No DEM is needed!
QuickBird vs SPOT Bam offsets

KISS Workshop, Caltech, Oct 28th-30th 2009
QuickBird Bam offsets

Epipolar offset component

Offset direction

N

S

+120 pixels

-100 pixels

Epipolar offsets are proportional to height (+ deformation + focal plane artefacts)

KISS Workshop, Caltech, Oct 28th-30th 2009
Possible strategy for 2D deformation measurements

One image before the event
Two images after the event
(or the contrary)

Images azimuth

Epipolar 1-3

Image 1 before

Epipolar 1-2

Image 2 after

Image 3 after

Can be generalized to N scenes
Limiting factors for horizontal ground deformation

- Quality of geometric model
 - Need high frequency jitter measurements
- Image quality (aliasing, pre-processing)
 - Waiting for Pleiades 50cm oversampled images
- Number of available images
 - Limited archive
 - Correlate images from different VHR satellites?
 - Different incidence angles: unavailable low B/H couples
 - Take 3 images instead of 2
 - Compute a precise DEM with a stereoscopic couple
- Small swath
 - Take advantage of satellite agility (image mosaics)
- Price
Vertical Geometric Measurements (stereo)

- **Input**
 - Stereoscopic acquisitions before
 - Stereoscopic acquisitions after

- **Output**
 - Difference of the 2 DEM

- **Advantages**
 - No time dependence
 - No radiometric coherence needed between the two dates. Get rid of shadows, seasonal changes, natural changes, etc.
 - Volume change measurements

- **Limiting factors**
 - Image quality (SNR, Shannon sampling)
 - Correlation precision
 - Quality of geometric models
 - Number of available images

- **State of the art**: no fine sub-pixel measurements
 - Actual main application: Urban modeling and updating
 - VHR stereo image intrinsic accuracy?
Geoeye stereo sub-pixel correlation artifacts

GEOEYE stereoscopic pair, 50cm resolution

0.5 pixel high frequency pattern
No subpixel measurement allowed with Geoeye!

Epipolar direction Perp.Epi. direction

KISS Workshop, Caltech, Oct 28th-30th 2009
Pleiades tri-stereo potential

Pleiades simulation, courtesy of CNES
Pleiades tri-stereo potential

Expected height accuracy in urban areas: ~1.5 m

Correlator is adapted to urban areas

Relief is high frequency

Shaded DEM (MICMAC correlator, courtesy of IGN France)
Pleiades tri-stereo potential

Expected height precision in urban areas: ~1.5 m

Correlator is adapted to urban areas

Relief is high frequency
Conclusion

- **Horizontal ground deformation**
 - Could reach 5 cm accuracy
 - No DEM needed
 - Pleiades images suitable
 - Application to co-seismic and post-seismic slip measurements:

- **Vertical ground deformation**
 - No time dependence
 - Sub-pixel correlation could lead to sub-meter height accuracy
 - Accuracy <1 m is feasible on non-urban landscape
 - Application to landslides monitoring?

- Could mix both measurements for 3D displacement