Instrument Constraints and Necessary Science Goals

Pat Beauchamp
JPL-Caltech
May 25, 2010
Instruments identified from Titan Studies and Constraints on Potential Future in situ Instruments
Titan Studies

• Many studies conducted over the last decade
• Each study has built upon the last
• NASA appointed Science Definition Teams for the last two studies
• Titan Saturn System Mission is the latest Flagship mission - 2008
• Decadal Survey Study on Titan Submersible conducted 2010
Titan has a complex organic factory in the atmosphere which deposits the products on the surface.
In Situ Measurements

• Lakes
• Atmosphere
• Dunes
 – Physical properties
 – Geophysical properties
 – Chemical composition
 – Geological measurements
 – Etc.
High Priority Science Questions
(established by joint science definition team)

• Goal A: Explore Titan, an Earth-Like System
 – What is Titan’s climate like?
 – How does it change with time?
 – What can it teach us about Earth’s climate?

• Goal B: Examine Titan’s Organic Inventory—A Path to Prebiological Molecules
 – What kind of organic chemistry goes in Titan’s atmosphere, in its lakes and seas, and underground?
 – Is the chemistry at the surface mimicking the steps that led to life on Earth?
 – Is there an exotic kind of life—organic but totally different from Earth’s—in the methane/ethane lakes and seas?

• Goal C: Explore Enceladus and Saturn’s magnetosphere—clues to Titan’s origin and evolution
 – What is the source of geysers on Enceladus?
 – Is there life in the source water of the geysers?

For discussion and planning purposes only
A short-lived Probe/Lander with liquid surface package would land in northern lake

Dedicated Titan orbiter would deliver the in situ elements and also be used for data relay

A hot-air balloon (Titan montgolfière) would float at 10 km above the surface around the equator with altitude control

For discussion and planning purposes only
Model instruments in the planning payload on the montgolfière

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Description</th>
<th>Science Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIS</td>
<td>Balloon Imaging Spectrometer (1–5.6 µm).</td>
<td>Mapping for troposphere and surface composition at 2.5 m resolution</td>
</tr>
<tr>
<td>VISTA-B</td>
<td>Visual Imaging System with two wide angle stereo cameras and one narrow angle camera</td>
<td>Detailed geomorphology at 1 m resolution</td>
</tr>
<tr>
<td>ASI/MET</td>
<td>Atmospheric Structure Instrument and Meteorological Package</td>
<td>Record atmosphere characteristics and determine wind velocities in the equatorial troposphere</td>
</tr>
<tr>
<td>TEEP-B</td>
<td>Titan Electric Environment Package</td>
<td>Measure electric field in the troposphere (0–10 kHz) and determine connection with weather</td>
</tr>
<tr>
<td>TRS</td>
<td>>150 MHz radar sounder</td>
<td>Detection of shallow reservoirs of hydrocarbons, depth of icy crust and better than 10 m resolution stratigraphic of geological features</td>
</tr>
<tr>
<td>TMCA</td>
<td>1–600 Da Mass spectrometer</td>
<td>Analysis of aerosols and determination of noble gases concentration and ethane/methane ratios in the troposphere</td>
</tr>
<tr>
<td>MAG</td>
<td>Magnetometer</td>
<td>Separate internal and external sources of the field and determine whether Titan has an intrinsic and/or induced magnetic field</td>
</tr>
<tr>
<td>MRST</td>
<td>Radio Science using spacecraft telecom system</td>
<td>Winds from tracking the montgolfière</td>
</tr>
</tbody>
</table>

For discussion and planning purposes only.
Model instruments in the planning payload on the lander

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Description</th>
<th>Science Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLCA</td>
<td>Titan Lander Chemical Analyzer with 2-dimensional gas chromatographic columns and TOF mass spectrometer. Dedicated isotope mass spectrometer.</td>
<td>Perform isotopic measurements, determination of the amount of noble gases and analysis of complex organic molecules up to 10,000 Da.</td>
</tr>
<tr>
<td>TiPI</td>
<td>Titan Probe Imager using Saturn shine and a lamp</td>
<td>Provide context images and views of the lake surface</td>
</tr>
<tr>
<td>ASI/MET-TEEP</td>
<td>Atmospheric Structure Instrument and Meteorological Package including electric measurements</td>
<td>Characterize the atmosphere during the descent and at the surface of the lake and to reconstruct the trajectory of the lander during the descent</td>
</tr>
<tr>
<td>SPP</td>
<td>Surface properties package</td>
<td>Characterize the physical properties of the liquid, depth of the lake and the magnetic signal at the landing site</td>
</tr>
<tr>
<td>LRST</td>
<td>Radio Science using spacecraft telecom system</td>
<td>Winds from tracking the lander</td>
</tr>
</tbody>
</table>
As stated in the initial Study Questionnaire document:

The purpose of the study is to determine the technical feasibility and cost of a lake probe mission both as an element of a future Titan flagship mission and as a standalone New Frontiers mission. A secondary objective is to identify the technology developments required to make such a mission possible in the next decade.
Science Goals

SGa: To understand the formation and evolution of Titan and its atmosphere

SGb: To study the lake-atmosphere interaction in order to determine the role of Titan’s lakes in the methane cycle

SGc: To study the target lake as a laboratory for pre-biotic organic chemistry in both water (or NH3 enriched water) solutions and non-water solvents

SGd: To understand if Titan has an interior ocean
Titan Lake Probe

Science Instrumentation

- **SGa: Atmospheric Evolution**
 - Lake Composition Analyzer (LCA)
- **SGb: Lake/atmosphere interaction**
 - Other Properties (OP)
 - Meteorological Package (MP)
- **SGc: Lake chemistry**
 - Lake Composition Analyzer (LCA)
 - Lake Properties Package (LPP)
 - Other Properties (OP)
- **SGd: Interior structure**
 - Lake Properties Package (LPP)

- **OP**
 - Dielectric constant
 - Speed of sound sensor
 - Temperature sensor
 - Pressure sensor
 - Refractive index
 - Turbidimeter
 - Densitometer
 - Accelerometer

- **LCA**
 - GC x GC MS
 - FTIR spectrometer

- **LPP**
 - GC x GC MS
 - Temperature sensor
 - Refractive index
 - Speed of Sound sensor
 - Turbidimeter
 - Permittivity meter
 - Echo sounder
 - Refractive index
 - Accelerometer
 - Magnetometer

For Planning and Discussion Purposes Only
Ways to think of translating the science to instruments
Traceability Matrix is the road from goals to instruments

<table>
<thead>
<tr>
<th>MISSION GOALS</th>
<th>SCIENCE OBJECTIVES</th>
<th>SCIENCE INVESTIGATIONS</th>
<th>REQUIRED MEASUREMENTS/DETERMINATIONS</th>
<th>PLANNING MEASUREMENT APPROACH</th>
<th>PLAN INSTR.</th>
<th>DATA PRODUCTS</th>
<th>MISSION REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal A: How does Titan function as a system; to what extent are there similarities and differences with Earth and other solar system bodies?</td>
<td>O8: Determine the state of internal differentiation, whether Titan has a metal core and an intrinsic magnetic field, and constrain the crustal expression of thermal evolution of Titan’s interior.</td>
<td>I1: Map interior structure of Titan.</td>
<td>M1: Global gravity field to at least degree six. Doppler accurate to 50 μm/s with 60 s integration periods.</td>
<td>A1: Relative velocity between the spacecraft and ground station determined from Doppler tracking with an accuracy up to 50 μm/s with 60 s integration periods (Ka-band link stability 10^{-12} after all calibrations including accelerometer for non-gravitational forces).</td>
<td>RSA</td>
<td>Coefficients of spherical harmonic expansion of gravity field for further analysis and interpretation in terms of internal structure. The static degree-two gravity field will lead to constraints on the global density structure of the interior. Time variations of the degree-two field will lead to investigating the tidal response of the satellite and constraining its viscoelastic structure and crustal structure.</td>
<td>Prefer mapping phase orbit height of 1500 km</td>
</tr>
<tr>
<td>Goal B: To what level of complexity has prebiotic chemistry evolved in the Titan system?</td>
<td>O1: Determine the processes leading to formation of complex organics in the Titan atmosphere and their deposition on the surface.</td>
<td>I1: Assay the speciation and abundances of atmospheric trace molecular constituents.</td>
<td>M1: Abundances of monomer and polymer organic species and inorganic species with a detectability of <1 ppb and an accuracy of better than 3% over an altitude range from 30–1500 km.</td>
<td>A1: Passive Thermal-infrared Fourier Transform spectrometry, in the region from 30–1400 wavenumbers (7–333 μm); resolution 0.1–3.0 wavenumber.</td>
<td>TIRS</td>
<td>Thermal and compositional maps and profiles of the stratosphere (50–450 km) with altitude and latitude.</td>
<td>Limb and nadir viewing on polar orbit, rotation in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A2: Submillimeter sounding at 540–640 GHz with resolution 300 khz and 10% precision in retrieved abundances.</td>
<td>SMS</td>
<td>All/lat maps of selected organics</td>
<td>Limb viewing from polar orbit, in-track and off-track orientation</td>
</tr>
</tbody>
</table>
The sample preselected from Cassini based on geology and spectra of organics

- Monomers (enantiomers) Elemental analysis
 - Excessive O (>> 10 ppm)
 - Carboxylic acid
 - Amino acids
 - Imides, Nucl. bases
 - Special arrangement (deviation from statistical)
 - Even vs. odd, etc.
 - Enantio-excess
 - Get really excited
 - Low O (10 ppm)
 - Nitriles, Amines, PAH
 - Azo-heterocycles
 - Special arrangement (deviation from statistical)
 - Even vs. odd, etc.
 - Enantio-excess
 - Get modestly excited
 - Metals (catalyst for polyacetylene)
 - No pattern
 - Abundances as from Titan photochemistry
 - Get excited
 - Chirality (diastereomers)
 - Deviation from random polymerization?
 - Yes
 - Analyze Potential for encoding? Potential for catalysis?
 - No
 - Quit polymer branch
 - No
 - Sub-units go to monomers
 - Oligomers (extraction)
 - Get excited
 - Slow down
 - Quit entirely (go back to Mars)

For discussion and planning purposes only
Capability for IR/Vis/UV spectroscopy and fluorescence studies should be provided at several points in the analysis scheme.

For discussion and planning purposes only
Constraints on Titan in situ instrument systems

• Low Mass
 – Cryogenic mechanisms
 – Electronics that can survive Titan ambient (~94K)
 – Dual purpose structures
 – Reduction in harnessing
 – Etc.

• Low Power

• Low volume

• High resolution

• High sensitivity

• Provide representative data (operations /miniaturization)

• Autonomy required

• High reliability

For discussion and planning purposes only
Constraints on Titan In situ instrument systems (Continued)

• Long lifetime (could be as long as 15 years including cruise)
• Manageable data rate
• Easily calibrated
• Must have compatible sample handling mechanisms
• Able to withstand extreme environments
• Able to withstand launch loads
• Accommodates Planetary Protection and Contamination Control requirements
• Space-flight qualifiable
• Thermally stable
• May have to withstand thermal cycling
• Flexibility
• KISS

For discussion and planning purposes only