Lab-on-a-Chip System Development for In Situ Exploration of Titan

Peter Willis
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

KISS Workshop, Caltech
May 25, 2010
Why choose lab-on-a-chip for spaceflight applications?

- Low mass, volume, and power requirements (amenable to robotic explorers)
- Fluid motion driven by electric fields or very small pressure differentials (i.e. no pump)
- Extremely sensitive
- Addresses key NASA agency goals
- Requires very little sample (less than a drop)

Key Questions for this workshop:
- How is sample handling done on Titan, and how does this affect the sample and analysis protocol?
- What are the specific science goals?
- **lab-on-a-chip instruments** could be designed to function autonomously on the surface of other planets.

- For Titan deployment, liquid could be sipped directly from lakes or processed from sediment and analyzed on-chip.
Figure 1. of (Successful) ASTID Proposal
“Lab-on-a-Chip System Development for Titan Exploration”
Fluorocur PFPE Pumps

Max abs. rate: 4 µL/sec
4mL / 1000sec
40mL / 10,000 sec
40mL / 2.8 hours

Time to fill an Electrode Well (20 µL) is 5 sec

shown above are measured pumping rates before and after one million actuations and thirty temperature cycles from -50C to +50C
How μCE Works

Three Mechanisms at play:
Diffusion, Electrophoresis, and Electroosmosis

\[
\frac{dc}{dt} + \nabla \cdot \left[D \nabla c z_i \mu_i Fc \nabla V + cu \right] = 0
\]

this is what separates a charged mixture into its components
Laser Induced Fluorescence Detection of Labeled Amino Acids

5 mM Borate pH = 8.5
5 amino acids mixture - $E_{\text{SEP}} = 5$ kV

Intensity vs. Time (sec)

- 20 nM
- 10 nM
Micro-capillary electrochromatography (μCEC) enables separations of neutral species through surface interactions with solid phase filling channels.
Where we are going: \(\mu \)CEC of PAHs

And CHIRAL resolution of amino acids

And Sending Everything into a Mass Spectrometer

N.B. Phase II SBIR with LGR to add spectroscopic second dimension and package portable unit

Extra Slides
Interfacing Lab-on-a-Chip With Mass Spectrometry

Label-free detection/identification of analytes

Electrospray Process

- Taylor Cone
- High Voltage Power Supply
- REACTION

PicoTip™ commercial product

300nL/min
30/70 water/acetonitrile
or 50/50 water/methanol
1.4-3.0 kV bias

m/z of MH⁺ Ions Displayed

Valine 118
Glutamic Acid 148

Glycine 76
Serine 106
Aspartic Acid 134

Mass spectrum of five amino acids produced via nanoelectrospray ionization of methanol/water solution
New LC-MS system
Note: all sprays so far have been driven by mechanical or pneumatic pressure, and have been pure samples.
Extra Slides: Mars Analyses
Field Testing in the Atacama Desert, Chile

demonstrated prototype operation in Mars analog relevant environment

differentiated between high and low concentration organic samples

Phoenix Analogue Experiment

RESULTS FROM PHOENIX MARS LANDER

Measured concentrations of ionic species in Rosy Red soil sample. Assumes delivery of a 1cm³ sample with density of 1g/cm³.

<table>
<thead>
<tr>
<th>Ionic Species</th>
<th>Concentration in Cell, mM</th>
<th>Est %wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg²⁺</td>
<td>2.9 (±1)</td>
<td>?</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>0.6 (±0.3)</td>
<td>3-5*</td>
</tr>
<tr>
<td>Na⁺</td>
<td>1.4 (±0.5)</td>
<td>0.10</td>
</tr>
<tr>
<td>K⁺</td>
<td>0.4 (±0.2)</td>
<td>0.03</td>
</tr>
<tr>
<td>ClO₄⁻</td>
<td>2.6 (±1)</td>
<td>0.75</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>0.6 (±0.2)</td>
<td>0.04</td>
</tr>
<tr>
<td>pH</td>
<td>7.7 (±0.3)</td>
<td></td>
</tr>
</tbody>
</table>

*From TEGA Analysis

MARTIAN ANALOGUE SAMPLE

We prepared a sample containing the soluble salts reported by the Phoenix Lander. We also included an ionic sulfate species**. Sample was spiked with 1µM Trp amino acid (200 ppb).

<table>
<thead>
<tr>
<th>Ionic Species</th>
<th>Concentration in Analogue, mM</th>
<th>Ion Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg²⁺</td>
<td>2.9</td>
<td>MgSO₄</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>0.6</td>
<td>CaCl₂</td>
</tr>
<tr>
<td>Na⁺</td>
<td>2.6</td>
<td>NaClO₄</td>
</tr>
<tr>
<td>K⁺</td>
<td>0.4</td>
<td>KCl</td>
</tr>
<tr>
<td>ClO₄⁻</td>
<td>2.6</td>
<td>NaClO₄</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>1.6</td>
<td>KCl, CaCl₂</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>2.9</td>
<td>MgSO₄</td>
</tr>
<tr>
<td>Total</td>
<td>6.5</td>
<td></td>
</tr>
</tbody>
</table>

**Presence of sulfates in the Martian regolith has been reported by analysis of data from MOC, OMEGA, MER Opportunity, and MSG TES instruments.
Phoenix Analogue Experiment
(Preliminary Data)

Significant finding: electrospray MS tolerated mM salt concentration in buffer -- Tryptophan was detectable even at the parent ion mass/charge.

We need to do MS-MS analysis underway to determine what these peaks are.