Matthew Beasley (CU-Boulder),

OPTICAL SYSTEMS FOR THE UV
OUTLINE

- Bandpasses and technology
- Consequences to optical designs
- Where are the improvements in each bandpass
UV (NOT AVAILABLE FROM GROUND)

- <550 Å requires either grazing incidence or multilayers over small bandpass
- EUV: 550 – 900 Å
- DUV: 900 – 1150 Å
- FUV: 1150 – 2000 Å
- NUV: 2000 – 3200 Å
EUV 550 – 900 Å

- EUV currently restricted to in-situ planetary measurements
 - Only a few astrophysical targets in this bandpass
- Architecture completely determined by low reflectivity (~30% broadband SiC, B₄C)
- Missions in this bandpass typically look at bright targets (can be small)
- Thin film metal films are only transmitting materials
900 – 1000 Å throughput requires SiC or B₄C (30% reflectivity)
1000 – 1150 Å can use LiF/Al for 60% (with good efficiency through optical wavelengths)
Architecture determined by poor reflectivity
Thin film metals are only transmitting materials, no lenses
INSTRUMENT FOR DUV (900 - 1000 Å)
DUV INSTRUMENT (1035 Å)

3D Layout
8/30/2011

whip_2.0.ZMX
Configuration: All 2

8/30/2011
WHY DUV? WHY WORK SO HARD?

- # of ground state transitions as function of wavelength
MgF$_2$/Al best choice for broadband operation
- 80% reflection allows three optic systems
- Transmitting optics (i.e., lenses) work, albeit poorly
- Good filters would be highly desirable scientifically
HUBBLE FUV
FUV INSTRUMENTS (1000 – 1600 Å)

3D Layout

8/30/2011

UVS_holo2_long_.exp22NX.2MX
Configuration 1 of 2
NUV 2000 – 3200 Å

- Excellent efficiency >85% from high quality MgF$_2$, mirror coatings not driver for architecture
- Good optical quality, decreasing scatter issues, low airglow
- Detectors have room for improvement
- Conventional filters leave something to be desired, but work
BROADBAND COATINGS

- Bare metal has been used (iridium, osmium), but low (~15%) reflectivity compromises performance
- Evaporated MgF₂/Al, LiF/Al, SiC, B₄C.
 - Represent advancements over bare high-Z metals in the UV (30 – 60%)
CURRENT COATINGS

- However, the MgF$_2$/Al and LiF/Al are simply to protect the native aluminum reflectivity and suffer short wave cutoff due to the crystal becoming opaque.

- Improvements on the way
OPTICAL FABRICATION ISSUES

- Diffraction limit costly to achieve with NUV/FUV optics due to testing issues
- Holographic diffraction gratings limited in figure quality, typically have little impact on systems
SCATTER

- Highly polished glass (< 10 Å rms) excellent
 - New metal optics acceptable in DUV (nickel clad aluminum)
- Gratings
 - Holographic in photoresist
 - VERY LOW (< 5x10^-7)
 - Holographic Ion Etched
 - Low (< 1 x 10^-5)
 - Ruled (via diamond)
 - Can be high
- Exotics
 - Silicon Lithography – probably low
 - Photonic material – low, may have other effects
FILTERS (AND DICHOICS)

- EUV – thin film metal filters and multi-layer reflective systems provide modest filter capacity
- DUV – thin film filters have been used. Nothing approaching narrowband (R~10 is the best I’m aware of)
- FUV – conventional filters becoming available, but throughput is low and resolution is modest (compared to optical wavelengths), reflection filters better
- NUV – Selections of materials is improving, better filters, reflective filters still competitive
EUV – detectors (silicon/MCP based) work well, DQE is high (>60% dropping as wavelengths get long, especially for silicon)

DUV – MCPs (or other photocathode based) have good DQE (~50%), Silicon ~30%

FUV – MCPs (or other photocathode) best at short wavelengths, Silicon potentially better at long wavelengths

NUV – silicon devices currently best, MCPs with GaN may be competitive
CONTAMINATION CONTROL

- Increasingly strict the shorter the wavelength due to hydrocarbon absorption of light
- Can be a cost driver for LiF/Al optics
 + Will result in cost increases over the entire mission for any UV instrument
AIRGLOW

- EUV, DUV, FUV – bright geocoronal airglow force some sort of control into instrument design
 - In situ planetary missions consider the airglow “science”
- NUV – airglow not a significant issue
DUV has substantial (and more profound increases in capability) available at low cost with a straightforward development path

Other UV bands have improvement paths
- Detectors are being worked on (several groups here)
- Filters, etc
These echelle systems are roughly equivalent (resolution, bandpass). The design on the left is a BETTER design.
DUV SYSTEMS

3D Layout
FIRE Rocket Payload
8/30/2011
first_part.png
Configuration 1 of 1

2D Layout

8/30/2011
paul_baker_fire.png
Configuration 1 of 1
UPGRADE PRIORITIES

- EUV/DUV
 1. Reflective coatings
 2. Gratings
 3. Detectors

- FUV
 1. Gratings/ Filters
 2. Detectors
 3. Reflective Coatings

- NUV
 1. Detectors
 2. Gratings/ Filters
 3. Reflective Coatings
ASTROPHYSICAL MISSION CONCEPTS

- Three-mirror anastigmat architecture good candidate for UVOIR instrument
- Unless operations below 1150 Å required, three mirrors not a significant impact for FUV
- DUV systems would require more exotic designs to integrate UV/Optical (and performance compromises)
- UV-only mission could make these trades