Intro to Soil Mechanics: the what, why & how

José E. Andrade, Caltech
The What?
What is Soil Mechanics?

erdbaumechanik

The application of the laws of mechanics (physics) to soils as engineering materials

Karl von Terzaghi is credited as the father of *erdbaumechanik*
sands & gravels

clays & silts
The Why?
Sandcastles what holds them up?
Palacio de Bellas Artes
Mexico, DF

uniform settlement
The leaning tower of Pisa

differential settlement
Teton dam

dam failure

Thursday, June 23, 2011
Katrina
New Orleans
levee failure
MER: Big Opportunity

xTerramechanics

Thursday, June 23, 2011
MER: Big Opportunity

xTerramechanics

Thursday, June 23, 2011
The How?
Topics in classic Soil Mechanics

- Index & gradation
- Soil classification
- Compaction
- Permeability, seepage, and effective stresses
- Consolidation and rate of consolidation
- Strength of soils: sands and clays
Index & gradation

Definition: soil mass is a collection of particles and voids in between (voids can be filled w/ fluids or air)

- **solid particle**
- **fluid (water)**
- **gas (air)**

Each phase has volume and mass

Mechanical behavior governed by phase interaction
Index & gradation

Key volumetric ratios

\[e = \frac{V_v}{V_s} \] void ratio

[0.4,1] sand
[0.3,1.5] clays

\[\eta = \frac{V_v}{V_t} \] porosity

[0,1]

\[S = \frac{V_w}{V_v} \] saturation

[0,1]

Key mass ratio

\[w = \frac{M_w}{M_s} \] water content

<1 for most soils
>5 for marine, organic

Key link mass & volume

\[\rho = \frac{M}{V} \] moist, solid, water, dry, etc.

ratios used in practice to characterize soils & properties
Gradation & classification

Grain size is main classification feature

- **Sands & gravels**
 - can see grains
 - mechanics~texture
 - \(d > 0.05 \text{ mm} \)

- **Clays & silts**
 - cannot see grains
 - mechanics~water
 - \(d < 0.05 \text{ mm} \)

Soils are currently classified using USCS (Casagrande)
Fabric in coarsely-grained soils

“loose packing”, high e
“dense packing”, low e

\[e = \frac{V_v}{V_s} \]

e_{max} greatest possible, loosest packing
e_{min} lowest possible, densest packing

\[I_D = \frac{e_{\text{max}} - e}{e_{\text{max}} - e_{\text{min}}} \]

relative density

strongly affects engineering behavior of soils

(a) Loose
(b) Dense
Typical problem(s) in Soil Mechanics

- Compact sand fill
- Calculate consolidation of clay
- Calculate rate of consolidation
- Determine strength of sand
- Calculate F.S. on sand (failure?)
- Need: stresses & matl behavior
Modeling tools
Theoretical framework

- continuum mechanics
- constitutive theory
- computational inelasticity
- nonlinear finite elements
Theoretical framework

- continuum mechanics
- constitutive theory
- computational inelasticity
- nonlinear finite elements

\[
\begin{align*}
\phi \frac{\dot{p}}{K_f} + \nabla \cdot \mathbf{v} &= -\nabla \cdot \mathbf{q} \\
\nabla \cdot \mathbf{\sigma} + \gamma &= 0
\end{align*}
\]
Theoretical framework

- continuum mechanics
- constitutive theory
- computational inelasticity
- nonlinear finite elements

\[q = k \cdot \nabla h \quad \text{darcy} \]
\[\dot{\sigma}' = c^{\text{ep}} : \dot{\epsilon} \quad \text{hooke} \]
\[k \quad \text{permeability tensor} \]
\[\text{controls fluid flow} \]
\[c^{\text{ep}} \quad \text{mechanical stiffness} \]
\[\text{controls deformation} \]
Theoretical framework

- continuum mechanics
- constitutive theory
- computational inelasticity
- nonlinear finite elements
Theoretical framework

- continuum mechanics
- constitutive theory
- computational inelasticity
- nonlinear finite elements

Displacement node
Pressure node
Finite Element Method (FEM)

- Designed to approximately solve PDE’s
- PDE’s model physical phenomena

- Three types of PDE’s:
 - Parabolic: fluid flow
 - Hyperbolic: wave eqn
 - Elliptic: elastostatics
FEM recipe

Strong from

Weak form

Galerkin form

Matrix form
Multi-D deformation with FEM

\[\nabla \cdot \sigma + f = 0 \quad \text{in} \ \Omega \quad \text{equilibrium} \]
\[u = g \quad \text{on} \ \Gamma_g \quad \text{e.g., clamp} \]
\[\sigma \cdot n = h \quad \text{on} \ \Gamma_h \quad \text{e.g., confinement} \]

Constitutive relation:

given \(u \) \rightarrow get \(\sigma \)

e.g., elasticity, plasticity
1. Set geometry
2. Discretize domain
3. Set material parameters
4. Set B.C.'s
5. Solve
1. Set geometry
2. Discretize domain
3. Set matl parameters
4. Set B.C.’s
5. Solve
Modeling Ingredients

1. Set geometry
2. Discretize domain
3. Set matl parameters
4. Set B.C.’s
5. Solve
Modeling Ingredients

1. Set geometry
2. Discretize domain
3. Set matl parameters
4. Set B.C.’s
5. Solve
1. Set geometry
2. Discretize domain
3. Set material parameters
4. Set B.C.’s
5. Solve
TIME STEP LOOP

ITERATION LOOP

ASSEMBLE FORCE VECTOR AND STIFFNESS MATRIX

ELEMENT LOOP: N=1, NUMEL

GAUSS INTEGRATION LOOP: L=1, NINT

CALL MATERIAL SUBROUTINE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

T = T + ΔT

constitutive model
Material behavior: shear strength

- Void ratio or relative density
- Particle shape & size
- Grain size distribution
- Particle surface roughness
- Water
- Intermediate principal stress
- Overconsolidation or pre-stress

Engineers have developed models to account for most of these variables

Elasto-plasticity framework of choice
A word on current characterization methods

Direct Shear

Pros: cheap, simple, fast, good for sands
Cons: drained, forced failure, non-homogeneous

Triaxial

Pros: control drainage & stress path, principal dir. cnst., more homogeneous
Cons: complex
Material models for sands should capture:

- Nonlinearity and irrecoverable deformations
- Pressure dependence
- Difference tensile and compressive strength
- Relative density dependence
- Nonassociative plastic flow
Material models for sands should capture

- Nonlinearity and irrecoverable deformations
- Pressure dependence
- Difference tensile and compressive strength
- Relative density dependence
- Nonassociative plastic flow
Material models for sands should capture

- Nonlinearity and irrecoverable deformations
- Pressure dependence
- Difference tensile and compressive strength
- Relative density dependence
- Nonassociative plastic flow
Material models for sands should capture

- Nonlinearity and irrecoverable deformations
- Pressure dependence
- Difference tensile and compressive strength
- Relative density dependence
- Nonassociative plastic flow
Material models for sands should capture:

- Nonlinearity and irrecoverable deformations
- Pressure dependence
- Difference tensile and compressive strength
- Relative density dependence
- Nonassociative plastic flow
Elasto-plasticity in one slide

Hooke’s law \(\dot{\sigma} = C^{ep} : \dot{\varepsilon} \)

Additive decomposition of strain \(\dot{\varepsilon} = \dot{\varepsilon}^e + \dot{\varepsilon}^p \)

Convex elastic region \(F(\sigma, \alpha) = 0 \)

Non-associative flow \(\dot{\varepsilon}^p = \dot{\lambda} g, \quad g := \partial G / \partial \sigma \)

K-T optimality \(\dot{\lambda} F = 0 \quad \chi H = -\partial F / \partial \alpha \cdot \dot{\alpha} \)

Elastoplastic constitutive tangent

\[
C^{ep} = C^e - \frac{1}{\chi} C^e : g \otimes f : C^e, \quad \chi = H - g : C^e : f
\]
Examples
Example of elasto-plastic model

\[
F = F(\sigma', \pi_i) \\
G = G(\sigma', \bar{\pi}_i) \\
H = H(p', \pi_i, \psi)
\]
model validation: drained txc and ps

Thursday, June 23, 2011
undrained txc loose sands
true triaxial $b=\text{constant}$
Plane-strain liquefaction numerical simulation
Plane-strain liquefaction numerical simulation
(a) Pore Pressure (in kPa)

(b) Deviatoric Strain

$H - H_L$

Field scale prediction
Levee failure
(recall Katrina)
References

AN INTRODUCTION TO
Geotechnical Engineering

Robert D. Holtz
William D. Kovacs

Soil Behaviour
and Critical State
Soil Mechanics

DAVID MUIR-WOOD