
MADARA: An Open Architecture for
Collaboration, Timing and Control

James Edmondson
<jedmondson@gmail.com>

Who is it for?

About MADARA: What is it?
MADARA is a high performance middleware and toolkit that enables rapid prototyping of
distributed applications, especially soft real-time systems

User
Code

Knowledge
Base

Logger

Native User
Functions

Transport

Filters

Bandwidth
Monitor

Packet
Scheduler

Network

User OS/file

KaRL Transport

Legend

System
Calls

OS/file

2/18/2015 MADARA: Collaboration, Timing and Control 2

About First Steps Intermediate Advanced Conclusion
What is it? How is it Different?

Who is it for?

About MADARA: How is it different?
• Nanosecond execution times through a focus on constant time operations
• Flexibility to integrate user callbacks on receive, send and rebroadcast
• Focus on Quality-of-Service, OS interactions, and control and timing
• Portable to various operating systems and architectures (ARM, Intel, AMD,

Windows, Linux, Mac, Android, iPhone, etc.)
• User-defined filters for augmenting information (image shaping,

UML/XMLification, packet dropping, etc.)
• First class support for strings, integers, doubles, arrays, and text and binary

files
• First class support for UDP, Multicast, Broadcast, and DDS transports
• Bandwidth shaping, deadline filtering, transport monitoring to prevent

overpublishing
• Extensibility to new transports, logical flows, and runtime code execution

(controllable by the developer)
• Decentralized but allows for implementing centralized patterns like

client/server, pub/sub, etc.
• Completely open source under a BSD license
• Well-documented in Wikis and Doxygen documentation

2/18/2015 MADARA: Collaboration, Timing and Control 3

About First Steps Intermediate Advanced Conclusion
What is it? How is it Different?

Who is it for?

Target Usage for MADARA Development

2/18/2015 MADARA: Collaboration, Timing and Control 4

About First Steps Intermediate Advanced Conclusion
What is it? How is it Different?

SMASH Project at Carnegie Mellon University

• Rapid prototyping of distributed applications
• Any developers interested in using a scripting-language-like helper language

for real-time system development
• Teachers who want to rapidly prototype advanced operating system concepts,

even on-the-fly in front of students
• Anyone who needs portable middleware that specializes in nanosecond

execution times, quality-of-service and networking support for usage on
Android, Mac, Windows, Linux, etc.

• Who we are not really targeting: website developers

Example Usage of MADARA

http://www.youtube.com/watch?v=MRLlo0iJPEE

Networking Basics

First steps: Networking Basics

User
Code

Knowledge
Base

Logger

Native User
Functions

Transport

Filters

Bandwidth
Monitor

Packet
Scheduler

Network

User OS/file

KaRL Transport

Legend

System
Calls

OS/file

2/18/2015 MADARA: Collaboration, Timing and Control 5

About First Steps Intermediate Advanced Conclusion
Overview

First steps: Networking Basics

#include "madara/knowledge_engine/Knowledge_Base.h"

Madara::Knowledge_Record::Integer my_id (1);

int main (int argc, char ** argv)
{

Madara::Transport::QoS_Transport_Settings settings;
settings.hosts.push_back ("239.255.0.1:4150");
settings.type = Madara::Transport::MULTICAST;

Madara::Knowledge_Engine::Eval_Settings eval_settings;
Madara::Knowledge_Engine::Knowledge_Base knowledge ("", settings);

Madara::Knowledge_Record processes = knowledge.get ("processes.deployed");
knowledge.set (".id", my_id);
knowledge.set ("process{.id}.ready", 1.0, eval_settings);
…

}

1. Include Knowledge Base

2. Setup Network Transport

3. Setup Knowledge Base

4. Query and Change the
Context

#include "madara/knowledge_engine/Knowledge_Base.h"

Madara::Transport::QoS_Transport_Settings settings;
settings.hosts.push_back ("239.255.0.1:4150");
settings.type = Madara::Transport::MULTICAST;

Madara::Knowledge_Engine::Knowledge_Base knowledge ("", settings);

Madara::Knowledge_Record processes = knowledge.get ("processes.deployed");
knowledge.set (".id", my_id);
knowledge.set ("process{.id}.ready", 1.0, eval_settings);

Example code

User
Code

Knowledge
Base Transport Network

2/18/2015 MADARA: Collaboration, Timing and Control 6

Networking Basics

About First Steps Intermediate Advanced Conclusion
Overview

Saving/LoadingSystem CallsPeriodic Loops

Intermediate Steps

User
Code

Knowledge
Base

Saving and
Logging

System
Calls

Native User
Functions

User OS/file

KaRL Transport

Legend

Section Overview
1. User-defined C++ Functions
2. System Calls within MADARA
3. Saving and Loading Contexts

2/18/2015 MADARA: Collaboration, Timing and Control 7

User Functions

About First Steps Intermediate Advanced Conclusion
Overview

Intermediate Steps: Native User Functions

User
Code

Knowledge
Base

Native User
Functions

Madara::Knowledge_Record
sense_environment (Madara::Knowledge_Engine::Function_Arguments & args,

Madara::Knowledge_Engine::Variables & vars)
{
Madara::Knowledge_Record::Integer num_objects = sense_objects ();
double temperature = poll_temperature ();
…
vars.set (".sensed_objects", num_objects);
vars.set (".temperature", temperature);

return Madara::Knowledge_Record::Integer (1);
}

Madara::Knowledge_Record
react_to_environment (Madara::Knowledge_Engine::Function_Arguments & args,

Madara::Knowledge_Engine::Variables & vars)
{
if (vars.evaluate (".sensed_objects > 5 || .temperature > 100").is_true ())

stop ();
else
move_to (next_target);

return Madara::Knowledge_Record::Integer (1);
}

Example of Creating External Native User Function Calls

Madara::Knowledge_Engine::Function_Arguments & args1. Function Arguments are
referenced via a C++
vector or Java array

Madara::Knowledge_Engine::Variables & vars

2. The Knowledge Base is
accessible via the
Variables Facade

3. Device drivers, external
library calls, etc. can be
called from within these
function calls

Madara::Knowledge_Record::Integer num_objects = sense_objects ();
double temperature = poll_temperature ();

2/18/2015 MADARA: Collaboration, Timing and Control 8

Saving/LoadingSystem CallsPeriodic LoopsUser Functions

About First Steps Intermediate Advanced Conclusion
Overview

Intermediate Steps: Native User Functions

User
Code

Knowledge
Base

Native User
Functions

…

int main (int argc, char ** argv)
{

Madara::Knowledge_Engine::Knowledge_Base knowledge;

knowledge.define_function ("sense", sense_environment);
knowledge.define_function ("react", react_to_environment);

while (knowledge.get ("terminated").is_false ())
{
knowledge.evaluate ("sense (); react ()");

}
}

Example of Calling Native User Functions

4. Define a named
function in MADARA for
the native user functions knowledge.define_function ("sense", sense_environment);

knowledge.define_function ("react", react_to_environment);

knowledge.evaluate ("sense (); react ()");
5. Call the functions from
within an evaluate or wait
call

2/18/2015 MADARA: Collaboration, Timing and Control 9

Saving/LoadingSystem CallsPeriodic LoopsUser Functions

About First Steps Intermediate Advanced Conclusion
Overview

Intermediate Steps: Creating a Periodic Loop

User
Code

Knowledge
Base

…

int main (int argc, char ** argv)
{

Madara::Knowledge_Engine::Knowledge_Base knowledge;

knowledge.define_function ("sense", sense_environment);
knowledge.define_function ("react", react_to_environment);

Madara::Knowledge_Engine::Wait_Settings wait_settings;
wait_settings.poll_frequency = 0.050; // every 50ms
wait_settings.max_wait_time = 100; // 100s (-1 is infinite wait)

knowledge.wait ("!terminated => (sense (); react ())", wait_settings);
}

Example of Calling Native User Functions

1. Define poll_frequency
and max_wait_time inside
of a wait settings class
2. Use a wait statement
with the defined wait
settings

Madara::Knowledge_Engine::Wait_Settings wait_settings;
wait_settings.poll_frequency = 0.050; // every 50ms
wait_settings.max_wait_time = 100; // 100s (-1 is infinite wait)

knowledge.wait ("!terminated => (sense (); react ())", wait_settings);

2/18/2015 MADARA: Collaboration, Timing and Control 10

Saving/LoadingSystem CallsPeriodic LoopsUser Functions

About First Steps Intermediate Advanced Conclusion
Overview

Intermediate Steps: Using System Calls

User
Code

Knowledge
Base

…

int main (int argc, char ** argv)
{

Madara::Knowledge_Engine::Knowledge_Base knowledge;

knowledge.evaluate (
“.begin_time = #get_time ();" // in nanoseconds
".file = #read_file ('\files\my_file.txt');"
".end_time = #get_time ();"
".total_time = .end_time - .begin_time;"
".file_size = #size (.file);"
"#print ('Read {.file_size} bytes in {.total_time} ns.\n')"

);
}

Example of Using System Calls

• System calls begin with a #
and cannot be overridden by
users.

• #print_system_calls will print
all system calls along with
documentation

• Most system calls map to
functions you can call
directly on the knowledge
base or a knowledge record

System Calls

2/18/2015 MADARA: Collaboration, Timing and Control 11

Saving/LoadingSystem CallsPeriodic LoopsUser Functions

About First Steps Intermediate Advanced Conclusion
Overview

Intermediate Steps: Saving and Loading Contexts

User
Code

Knowledge
Base

int main (int argc, char ** argv)
{

Madara::Knowledge_Engine::Knowledge_Base knowledge;

knowledge.evaluate (
"begin_time = #get_time ();" // in nanoseconds
"file = #read_file ('\files\my_file.txt');"
"end_time = #get_time ();"
"total_time = end_time - begin_time;"
"file_size = #size (.file);"
"clock = #clock ();"

);

Madara::Knowledge_Record clock = knowledge.get ("clock");
std::string filename = "\files\my_context_" + clock.to_string () + ".kbb“;

knowledge.save_context (filename);
knowledge.load_context (filename, false);

}

Example of Saving and Loading Context

• To save all variables in
the context, use the
save_context function

System Calls

knowledge.save_context (filename);

• To load all variables from
a file, use the
load_context function

• There is also a
save_checkpoint function
for incremental updates

knowledge.load_context (filename, false);

2/18/2015 MADARA: Collaboration, Timing and Control 12

Saving/LoadingSystem CallsPeriodic LoopsUser Functions

About First Steps Intermediate Advanced Conclusion
Overview

User
Code

Knowledge
Base

Native User
Functions

Transport

Filters

Bandwidth
Monitor

Packet
Scheduler

Network

User

KaRL Transport

Legend

Advanced MADARA Features

Section Overview
1. Network rebroadcasting
2. Bandwidth enforcement
3. Deadline enforcement
4. Custom filters

2/18/2015 MADARA: Collaboration, Timing and Control 13

Custom FiltersDeadline EnforcementBandwidth EnforcementRebroadcasting

About First Steps Intermediate Advanced Conclusion
Overview

agent2 agent3agent1

ttl = 1 ttl = 2

Advanced MADARA Features: Network Rebroadcasting
In wireless systems or connected
networks, messages sometimes have
to be routed to their intended targets

In MADARA, we facilitate such network
routing via the rebroadcast ttl feature.

This feature is also useful in unreliable networks where resends
are necessary

Example of agent1 sending with ttl of 1 and 2

2/18/2015 MADARA: Collaboration, Timing and Control 14

Custom FiltersDeadline EnforcementBandwidth EnforcementRebroadcasting

About First Steps Intermediate Advanced Conclusion
Overview

#include "madara/knowledge_engine/Knowledge_Base.h"

Madara::Knowledge_Record::Integer my_id (1);

int main (int argc, char ** argv)
{
Madara::Transport::QoS_Transport_Settings settings;
settings.hosts.push_back ("239.255.0.1:4150");
settings.type = Madara::Transport::MULTICAST;
settings.enable_participant_ttl ();
settings.set_rebroadcast_ttl (2);

Madara::Knowledge_Engine::Knowledge_Base knowledge ("", settings);
Madara::Knowledge_Engine::Eval_Settings eval_settings;

Madara::Knowledge_Record processes = knowledge.get ("processes.deployed");
knowledge.set (".id", my_id);
knowledge.set ("process{.id}.ready", 1.0, eval_settings);
…

}

1. Setup normal transport
settings

Example code

User
Code

Knowledge
Base Transport Network

Advanced MADARA Features: Network Rebroadcasting

Madara::Transport::QoS_Transport_Settings settings;
settings.hosts.push_back ("239.255.0.1:4150");
settings.type = Madara::Transport::MULTICAST;

2. To participate in
rebroadcasts, use the
enable_participant_ttl
function

settings.enable_participant_ttl ();

settings.set_rebroadcast_ttl (2);

3. To set the time-to-live (ttl)
for rebroadcasting data
from this agent, set the
rebroadcast ttl.

knowledge.set ("process{.id}.ready", 1.0, eval_settings);

4. Any updated global
variables will be
rebroadcasted by other
agents

2/18/2015 MADARA: Collaboration, Timing and Control 15

Custom FiltersDeadline EnforcementBandwidth EnforcementRebroadcasting

About First Steps Intermediate Advanced Conclusion
Overview

Advanced MADARA Features: Bandwidth Enforcement

In real networks, bandwidth is finite
and valuable, yet one publisher can
overwhelm the entire network

In MADARA, we facilitate provide both
coarse-grained and fine-grained
bandwidth enforcement. These
features are very useful, especially
when reading files into the knowledge
base.

We next discuss coarse-grained bandwidth enforcement.

agent1 usage agent2agent1

Example of agent1 using all bandwidth between agent1 and agent2

available bandwidth agent2agent1
agent1 usage

Example of agent1 usage after bandwidth enforcement

2/18/2015 MADARA: Collaboration, Timing and Control 16

Custom FiltersDeadline EnforcementBandwidth EnforcementRebroadcasting

About First Steps Intermediate Advanced Conclusion
Overview

#include "madara/knowledge_engine/Knowledge_Base.h"

Madara::Knowledge_Record::Integer my_id (1);

int main (int argc, char ** argv)
{

Madara::Transport::QoS_Transport_Settings settings;
settings.hosts.push_back ("239.255.0.1:4150");
settings.type = Madara::Transport::MULTICAST;
settings.set_send_bandwidth_limit (100000);
settings.set_total_bandwidth_limit (1000000);

Madara::Knowledge_Engine::Knowledge_Base knowledge ("", settings);
Madara::Knowledge_Engine::Eval_Settings eval_settings;

Madara::Knowledge_Record processes = knowledge.get ("processes.deployed");
knowledge.set (".id", my_id);
knowledge.read_file ("agent{.id}.view", "/image.jpg" eval_settings);
…

}

1. Setup normal transport
settings

Example code

User
Code

Knowledge
Base Transport Network

Advanced MADARA Features: Bandwidth Enforcement

Madara::Transport::QoS_Transport_Settings settings;
settings.hosts.push_back ("239.255.0.1:4150");
settings.type = Madara::Transport::MULTICAST;

2. Send bandwidth limit
regulates an upper limit on
what this agent sends

settings.set_send_bandwidth_limit (100000); // 100KB/s over 10s

settings.set_total_bandwidth_limit (1000000); // 1MB/s over 10s

3. Total bandwidth limit
regulates sending based on
what has been received
over past 10s

knowledge.read_file ("agent{.id}.view", "/image.jpg" eval_settings);
4. No new updates will be
sent unless the bandwidth
usage is less than the limits

2/18/2015 MADARA: Collaboration, Timing and Control 17

Custom FiltersDeadline EnforcementBandwidth EnforcementRebroadcasting

About First Steps Intermediate Advanced Conclusion
Overview

Advanced MADARA Features: Deadline Enforcement

In networks, especially in wireless
networks, packet resends can result in
long latencies between send and
receive. In many real-time systems, old
data is rarely useful and should be
discarded in preference of new data.

We next discuss coarse-grained deadline enforcement.

agent2agent1

Example of delta of send/recv being 10s, too old

agent2agent1
In MADARA, we facilitate both coarse-
grained and fine-grained deadline
enforcement.

δt == 10s

data

δt == 10s

data

δt == 2s

data

Example of two messages, one of which has acceptable latency

2/18/2015 MADARA: Collaboration, Timing and Control 18

Custom FiltersDeadline EnforcementBandwidth EnforcementRebroadcasting

About First Steps Intermediate Advanced Conclusion
Overview

#include "madara/knowledge_engine/Knowledge_Base.h"

Madara::Knowledge_Record::Integer my_id (1);

int main (int argc, char ** argv)
{

Madara::Transport::QoS_Transport_Settings settings;
settings.hosts.push_back ("239.255.0.1:4150");
settings.type = Madara::Transport::MULTICAST;
settings.set_deadline (10);

Madara::Knowledge_Engine::Knowledge_Base knowledge ("", settings);
Madara::Knowledge_Engine::Eval_Settings eval_settings;

Madara::Knowledge_Record processes = knowledge.get ("processes.deployed");
knowledge.set (".id", my_id);
knowledge.read_file ("agent{.id}.view", "/image.jpg" eval_settings);
…

}

1. Setup normal transport
settings

Example code

User
Code

Knowledge
Base Transport Network

Advanced MADARA Features: Deadline Enforcement

Madara::Transport::QoS_Transport_Settings settings;
settings.hosts.push_back ("239.255.0.1:4150");
settings.type = Madara::Transport::MULTICAST;

2. Set deadline to the
number of acceptable
seconds

settings.set_deadline (10); // 5s deadline

2/18/2015 MADARA: Collaboration, Timing and Control 19

Custom FiltersDeadline EnforcementBandwidth EnforcementRebroadcasting

About First Steps Intermediate Advanced Conclusion
Overview

Advanced MADARA Features: Custom Filters
Custom filters in MADARA are native
user functions that can be called by the
transport layer.

Even Example application use cases

On Send • Converting a value to or from XML or plain text
• Resizing, cropping, or shaping images or other

payloads
• Encrypting specific values
• Fine-grained bandwidth enforcement

On Receive • Transparent participation in mutual exclusion
• User-configurable rejection of payloads
• Generating additional data for rebroadcasts
• Decryption

On
Rebroadcast

• Adding metadata to a rebroadcasted packet
• Removing large payloads from a rebroadcast

Transport Filters

Network

Send Filter Chain

Transport

Receive Filters

Rebroadcast Filters

Knowledge
Base

Network
Receive Filter Chain

2/18/2015 MADARA: Collaboration, Timing and Control 20

Custom FiltersDeadline EnforcementBandwidth EnforcementRebroadcasting

About First Steps Intermediate Advanced Conclusion
Overview

Advanced MADARA Features: Custom Filters: Arguments

Custom filters in MADARA are called
with a specific vector of arguments
that allow you to understand the
context of invocation of the filter

Index Description

[0] Record being sent, received or rebroadcasted

[1] Name of record

[2] Operation type (SEND, RECEIVE, REBROADCAST)

[3] Send bandwidth used in b/s over last 10s

[4] Total bandwidth used in b/s over last 10s

[5] Wall clock time of generation of message in
seconds

[6] Wall clock time of this operation in seconds

[7] Domain (partition of knowledge updates)

[8] Knowledge originator (source of the update)

Index Description

[n + 1] Name of new record

[n + 2] Value of new record

… Repeat as needed with args.push_back function

The arguments vector is modifiable to
provide developers with the ability to
add metadata or new records that are
generated during a send, receive, or
rebroadcasted message

Adding records for send/rebroadcast

2/18/2015 MADARA: Collaboration, Timing and Control 21

Custom FiltersDeadline EnforcementBandwidth EnforcementRebroadcasting

About First Steps Intermediate Advanced Conclusion
Overview

Advanced MADARA Features: Custom Filters: Example: Encryption

2/18/2015 MADARA: Collaboration, Timing and Control 22

Custom FiltersDeadline EnforcementBandwidth EnforcementRebroadcasting

About First Steps Intermediate Advanced Conclusion
Overview

Madara::Knowledge_Record
encrypt (Madara::Knowledge_Engine::Function_Arguments & args,

Madara::Knowledge_Engine::Variables & vars)
{
Madara::Knowledge_Record result;
if (args[0].is_binary_file_type ())
{
size_t size;
unsigned char * buffer = args[0].to_unmanaged_buffer (size);

// use shared_key that has been created with blowfish_ecb_setup function
blowfish_ecb_encrypt (buffer, buffer, &shared_key);

result.set_file (buffer, size);

delete buffer;
}
return result;

}

1. Grab an unmanaged
buffer of the file

2. Encrypt the file with a
shared key

3. Set the return value to
the encrypted file

A simple Send Filter for encrypting each binary file payload

4. Clean up the buffer and
return the new result to
be sent over the network

size_t size;
unsigned char * buffer = args[0].to_unmanaged_buffer (size);

blowfish_ecb_encrypt (buffer, buffer, &shared_key);

result.set_file (buffer, size);

delete buffer;
}
return result;

We highlight the feature with an example of using Blowfish encryption with libtomcrypt on binary files.

Advanced MADARA Features: Custom Filters: Example: Encryption
We highlight the feature with an example of using Blowfish encryption with libtomcrypt on binary files.

2/18/2015 MADARA: Collaboration, Timing and Control 23

Custom FiltersDeadline EnforcementBandwidth EnforcementRebroadcasting

About First Steps Intermediate Advanced Conclusion
Overview

Madara::Knowledge_Record
decrypt (Madara::Knowledge_Engine::Function_Arguments & args,

Madara::Knowledge_Engine::Variables & vars)
{
Madara::Knowledge_Record result;
if (args[0].is_binary_file_type ())
{
size_t size;
unsigned char * buffer = args[0].to_unmanaged_buffer (size);

// use shared_key that has been created with blowfish_ecb_setup function
blowfish_ecb_decrypt (buffer, buffer, &shared_key);

result.set_file (buffer, size);

delete buffer;
}
return result;

}

1. Grab an unmanaged
buffer of the file

2. Decrypt the file with a
shared key

3. Set the return value to
the encrypted file

A simple Receive Filter for decrypting each binary file payload

4. Clean up the buffer and
return the new result,
which will then be applied
to the knowledge base

size_t size;
unsigned char * buffer = args[0].to_unmanaged_buffer (size);

blowfish_ecb_decrypt (buffer, buffer, &shared_key);

result.set_file (buffer, size);

delete buffer;
}
return result;

Advanced MADARA Features: Custom Filters: Example: Encryption

2/18/2015 MADARA: Collaboration, Timing and Control 24

Custom FiltersDeadline EnforcementBandwidth EnforcementRebroadcasting

About First Steps Intermediate Advanced Conclusion
Overview

#include "madara/knowledge_engine/Knowledge_Base.h"

Madara::Knowledge_Record::Integer my_id (1);

int main (int argc, char ** argv)
{
Madara::Transport::QoS_Transport_Settings settings;
settings.hosts.push_back ("239.255.0.1:4150");
settings.type = Madara::Transport::MULTICAST;

settings.add_send_filter (Madara::Knowledge_Record::ALL_FILE_TYPES, encrypt);
settings.add_receive_filter (Madara::Knowledge_Record::ALL_FILE_TYPES, decrypt);

Madara::Knowledge_Engine::Knowledge_Base knowledge ("", settings);
Madara::Knowledge_Engine::Eval_Settings eval_settings;

knowledge.set (".id", my_id);
knowledge.read_file ("agent{.id}.view", "/image.jpg" eval_settings);
…

}

1. Setup normal transport
settings

A simple main function for adding the send and receive filters to a knowledge base

Madara::Transport::QoS_Transport_Settings settings;
settings.hosts.push_back ("239.255.0.1:4150");
settings.type = Madara::Transport::MULTICAST;

2. Add the send and receive
filters for all file types

settings.add_send_filter (Madara::Knowledge_Record::ALL_FILE_TYPES, encrypt);
settings.add_receive_filter (Madara::Knowledge_Record::ALL_FILE_TYPES, decrypt);

knowledge.read_file ("agent{.id}.view", "/image.jpg" eval_settings);

3. Any files will be encrypted
before they are sent and
decrypted before being
applied to knowledge base

We highlight the feature with an example of using Blowfish encryption with libtomcrypt on binary files.

Advanced MADARA Features: Custom Filters: Notes

2/18/2015 MADARA: Collaboration, Timing and Control 25

Custom FiltersDeadline EnforcementBandwidth EnforcementRebroadcasting

About First Steps Intermediate Advanced Conclusion
Overview

• Filters can be added together to form a filter chain
• Filter chains are executed in the sequence they were added to the transport settings
• MADARA provides a set of generic filters in madara/filters/Generic_Filters.h

Name Description

discard Discard all records

discard_nonprimitives Discard all non-primitive types

discard_nonfiles Discard all non-file types

log_args Prints all arguments to the MADARA logger (default stderr). This filter is
very useful for debugging filters and applications.

More Information

Upcoming Features (Short term--within 2 months)
• Visualization System (DSML)

• Aids in designing new MADARA applications

• Update Aggregation Filters
• Informs developer of complete context of aggregate update for filtering purposes
• Unlike Update Filters, does not provide args vector
• Provides a STL map of variable names to records
• Provides a Transport Context

2/18/2015 MADARA: Collaboration, Timing and Control 26

About First Steps Intermediate Advanced Conclusion
Upcoming Features

More Information

The results of the MADARA project could not have been possible without support and
feedback from various colleagues, students, and coworkers, and collaboration with
researchers in funded projects from the universities and organizations below. THANK YOU!

More Information About MADARA
Website: madara.googlecode.com

Wiki | Library Documentation | Installation | Developer Blog

SMASH project: smash-cmu.googlecode.com | Youtube Demo

Main Developers: James Edmondson, James Root (Java port)

Special thanks: Sebastian Echeverria, Anton Dukeman, Subhav Pradhan, Ben Bradshaw,
Anthony Rowe, Luis Pinto, and the AMS group at SEI

2/18/2015 MADARA: Collaboration, Timing and Control 27

About First Steps Intermediate Advanced Conclusion
Upcoming Features

http://madara.googlecode.com/
https://code.google.com/p/madara/wiki/MadaraArchitecture?tm=6
https://madara.googlecode.com/svn/docs/karl/html/index.html
https://code.google.com/p/madara/wiki/InstallationFromSource
http://distributedreasoner.blogspot.com/
http://smash-cmu.googlecode.com/
http://www.youtube.com/watch?v=MRLlo0iJPEE
mailto:jedmondson@gmail.com
mailto:james.root@gmail.com

	MADARA: An Open Architecture for Collaboration, Timing and Control
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

