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Cam W feedbacis?

o Yes, but ...

O Parameterizations continue to be the largest

uncertainty in global climate model simulations
of climate change

O Scale coupling is a huge problem

o Is the multi-scale modeling framework (MMF;
superparameterization) a way to get process
physics into a GCM?

o Could talk about that but will not today



Can WE MEASUIRS feedbaciks?

o Maybe, but ....

O Current knowledge of cloud properties is
uncertain because of the difficulty of measuring
them, instrument differences, and lack of clarity in
definition (cloud fraction?)

O EOS data really helping but data time series are
likely to be discontinuous (MISR, MODIS,
CloudSat, CALIPSO)

o How do we unscramble transient effects from
long-term feedbacks? (regional vs. global; climate
variability vs. change)



Elowiabolidiegimelsonting

O Popularized by Bony and DuFrense (2005)
o Used vertical velocity (|-parameter)

o Discussed this morning by Chris Bretherton

O Further regime sorting discussed by Joel
Norris (2-parameter)



Sensitivity (in W /m2 /K) of
the tropical (30°S—30°N) NET,
SW, and LW CRF to SST
changes associated with
climate change derived from
|5 coupled ocean—atmosphere
GCMs . Negative values of w
correspond to large-scale
ascent and positive values to

large-scale subsidence. [From
Bony and Dufresne (2005)]
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Regine seriing en e Regilonel sealie

O Starting thinking about this some time ago

o Motivated by ARM data => Time series statistics
of cloud properties measured by ARM at a single
site (SGP) are different from statistics predicted
by a model

g Why?
o Cloud parameterization is wrong

o Dynamical patterns are wrong (parameterization
forcing is wrong)

o How can we tell the difference!?



O Sort atmosphere into dynamical regimes or
states using NVVP re-analysis fields

O ldentify clouds associated with each state
using ground-based mm-wavelength radar
(composite profiles)

O Sort model fields into same state and compare
composite cloud profiles (use radar simulator)

O So what happens when we try this at ARM
Southern Great Plains (Oklahoma) site?



Nezd & @eell

o Cluster analysis / pattern recognition

o
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Aggregate observations based on a
classification of the large-scale
atmospheric state

: Self-Organizing :
NWP Analysis Atmospheric
(0, T, u, v, w, RH) pmmmndl  Neural Network  Jassssnd State #

Classifier 1

Aggregate Data




Training data

Neural

Network /
Clustering
Algorithm

A 4

Year to Year
Stability Test

Neural Network
Classification Scheme

Reassign training data
to current set of state

INCE
states
stable?

Are all
states
distinct?

definitions

Identify (up to)
four least
stable states.

Identify (up to)
four least
distinct states.

For each of these 4 states:

Divide large states (those
with more than 6% of input
vectors) into 2 new states
via clustering (of only those
points in the state to be
divided).

Remove small states.
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Aggregate observations and model
output based on a classification of
the large-scale atmospheric state

: Self-Organizing :
NWP Analysis Atmospheric
(0, T, u, v, w, RH) pmmmndl  Neural Network  Jassssnd State #

Classifier 1

|
State Definitions Aggregate Data
& Compare

: T
GCM output | » Q@ Atmospheric
(p’ T, u, V, W, RH) State #




Multiscale Modeling Framework (MMF)

MMF Simulations :

e Control
e 4 km horizontal
e 64 columns
* 26 vertical layers
e Testa
e 1 km horizontal
e 64 & 128 columns
* 26 vertical layers
e Test B
e 1 km horizontal
e 64 columns
* 52 vertical layers

—

Run on PNNL MPP2 and SDSC Datastar with

support from CMMAP.




1 RUC(B.0) MMF(4.9) p:0 028 2 RUC(8.3),MMF (5.5} p:0.081 3 RUC(6.0L,MMF(7.0) p:0.013

6 RUC(5.9). MMF(3.8) p:0 433

4 RUC(8.3). MMF[9.7) p0.013 5 RUC(7.0), MMF(1.8) p:0.245

7 BUG(13.2) MMF(9.1) p:0.002 8 BUC(8.7). MMF(11.1) p:0.190 9 RUG{10.9). MMF(23.1} p:0.001

12 RUC(8.5},MMF(7.0} p.0.019

10 RUC(7.9), MMF(7.8) p:0.112

Blue = ARM
(RUC)

Red = MMF

Radar cut =
-40 dBz



1 RUC(6.0). MMF(4.9) p:0.072 2 BUC(B.3).MME([5.5) p:0.025 3 RUC(6.0).MMF(7.0) p0.034

Blue = ARM

« (RUC)
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4 RUC(8.3) MMF(9.7) p0.012 5 RUC(7.0).MMF(1.8) p:0.642 6 RUC(5.9),MMF(3.8) p:0.257 Radar cut =

-25 dBz

7 RUC(13.2) MMF(9 1) p:0.002 8 RUC(8.7).MMF(11.1) p:0.549 9 RUC(10.9) MMF(23.1) p:0 006

10 RUC({7.9).MMF(7 8) p:0.464 11 RUC(9.2) MMF(9.3) p:0.248 12 RUC(8.5).MME(7.0) p:0.066
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Cendusions e SEIP sutaly

o Scheme works!

o Can now identify by regime and cloud level
where model is doing well and where not

O Need more data to increase significance

O Potential next step is to figure out why model
is performing poorly for certain regimes and
try to improve embedded CRM physics



@aniwelexpondtofancthedlocale?
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O Try same scheme|
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Use “data” from ECMWVEF re-analysis from 2006-2008.
® 8x daily

® Half degree resolution, sampled on a 9x9 grid at 2 x 2.5
® 7/ vertical levels (1000,875, 750, 625, 600, 375, 250)

® Temperature, relative humidity, zonal and meridional wind, and surface pressure
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Monthly histogram of occurrences of each state.
Titles indicate total number of instances of each state.
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State |: Monsoon

Upper Left:
Surface dew point (C) and
winds

Upper Right:
Surface temp (C), and winds

Middle Left:
Surface pressure anomaly
(hPa) and 500 hPa winds

Middle Right:
875 hPa Temp (C) and winds

Lower Left:
500 hPa RH and winds

Lower Right:
375 hPa RH and winds

Latitude, deg
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|
State 3: Dry season

Upper Left:
Surface dew point (C) and
winds

Upper Right:
Surface temp (C), and winds

Middle Left:
Surface pressure anomaly
(hPa) and 500 hPa winds

Middle Right:
875 hPa Temp (C) and winds

Lower Left:
500 hPa RH and winds

Lower Right:
375 hPa RH and winds
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Condusions er TP

O Too early to tell

O Some parts are promising but we aren’t
getting a lot of state discrimination

o Take larger area?

o Use other parameters like MJO index!?

o Talk tousin 6 to |2 months ...



SE WinERE feedbacis?

O Cloud properties for current climate and
model climate given by
a Sum{ (Si) x CP(Si) }
o f(Si) = normalized probability of state i
o CP(Si) = cloud property of state i (remember this

is a distribution itself!)

O Let’s assume that CP(Si) are in good
agreement for observations and model for all
Si (or almost all)



SE WinERE feedbacis?

o Now perturb model (increase CO2, etc.)
O Sort model into states: f (Si) [different from f(Si)]

O Implications:

o Climate change can be reduced to identifying changes
in state frequencies

o Cloud changes can be computed from
Sum{ [f,(Si) — f(Si)] x CP(i) ?
o Cloud feedbacks can be related to these changes

o Feedback of different cloud types can be related to
frequency of changes of states associated with those
clouds



o Can we do this on a global scale?

o Break world into regions, but how big? how many?
o Are CloudSat data spatially adequate!?

O Can identify cloud property changes but how do
we separate cloud feedback from system
changes?

o Why did the state frequency change!?

O Are our state definitions robust?

o Does climate change produce “new” atmospheric
states?! (may require a more rigorous definition of
state)



