

XSOLARA

ExtraSolar Observing Low-Frequency Array for Radio Astronomy

Workshop for CubeSat-Based Low Frequency Radio Astronomy Keck Institute For Space Studies July 10,2012


Payam Banazadeh

(<u>payam.banazadeh@gmail.com</u>) or

(pbanazadeh@utexas.edu)

Team

JPL Mentors

Dayton Jones Joseph Lazio Daniel Scharf Courtney Duncan

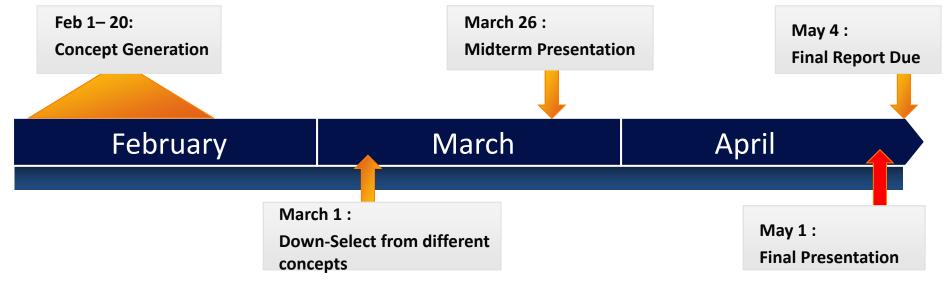
Study Lead

Payam Banazadeh

Team Members

Chinmay Aladangady Michelle Bolduc Bryse Ed Sarah Hand Kyle Olson Rebekah Sosland

2



Timeline

- XSOLARA team primary objective:
 - Feasible mission
 - High science return
 - Low cost
 - Student designed/built mission

- XSOLARA team constraints:
 - Only 3 months to work on
 - Team of 7 "full time" students
 - Limited resources

Science

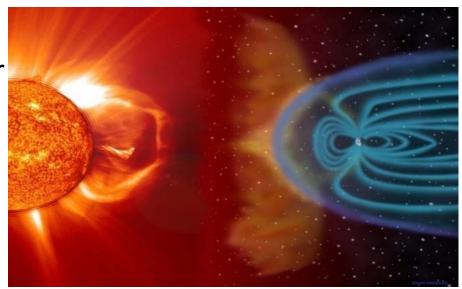
XSOLARA Goals

Science Goal:

- Detect extrasolar planets
- Prove the concept that exoplanets can be detected with this method
- Path finder mission

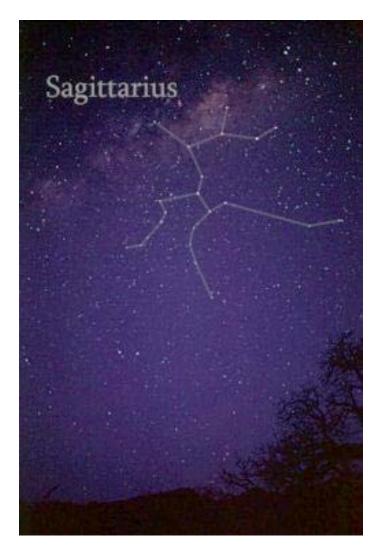
Education Public Outreach (EPO) Goal:

- Inspire and motivate students to do STEM
- Provide hands on experience for college students



Science Background

- Earth and gas giants of our solar system are "magnetic planets"
 - The interaction between solar wind and their "magnetospheres" generate radio-wavelength masers
 - In the case of Earth, its magnetic field contributes to its habitability



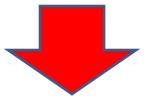
Science Background

- In 2004, an exoplanet orbiting HD 179949 located 90 light-years in Sagittarius was identified to have magnetic properties
 - Hot spot that rotates around the star every 3 days (period of the planet)
 - Cause: Interaction between planet's magnetic field and the star's lower atmosphere
 - Analogous to magnetic connections between Jupiter and its moons

Science background

- It's likely that most or all
 Current searches: giant exoplanets possess magnetic fields
- One could use this discovery to "detect" exoplanets
 - Extrasolar giant planets should emit at radio wavelength allowing for their direct detection

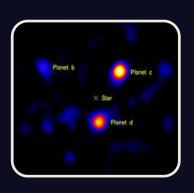
- - Very Large Array (VLA)
 - 74 MHz/ 135-200 mJy
 - Metrewave Radio Telescope(GMRT)
 - 150 MHz/0.3-2mJy



Science Priority

- Huge limitation for all the ground-based telescopes:
 - Earth's ionosphere
 - Cut off frequency of 10 MHz

Need for a space-based radio telescope



XSOLARA

Science Objectives

Primary

 Detect known exoplanets in order to prove the concept that exoplanets can be detected by looking for magnetospheric emissions in low-frequency range.

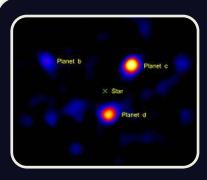

Secondary

 Image and track transient solar disturbances. Observe Earth's magnetospheric response to these coronal mass ejections (CMEs) and accurately predict geomagnetic storms days in advance.

Primary Objective

Primary

• Detect known exoplanets in order to prove the concept that exoplanets can be detected by looking for magnetospheric emissions in low-frequency range.

Scientific Investigations

- Observe pre-determined stars in 0.1-10 MHz frequency range
- Achieve sensitivities in order of mJy

Science Return Areas

- Enhancement of radio emission at the location of the target star
- Demonstrating that there is radio emission coming from the direction of the pre-determined star
- Prove the concept

Secondary Objective

Secondary

• Image and track transient solar disturbances. Observe Earth's magnetospheric response to these coronal mass ejections (CMEs) and accurately predict geomagnetic storms days in advance.

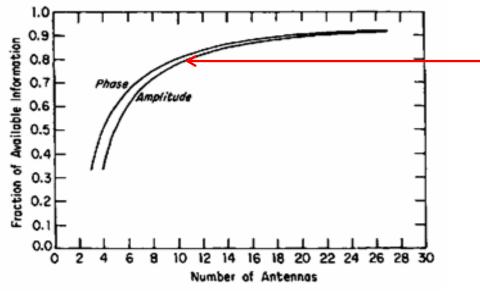
Scientific Investigations

- Little to no modification to the system
- Observe solar disturbances in the low frequency range

Science Return Areas

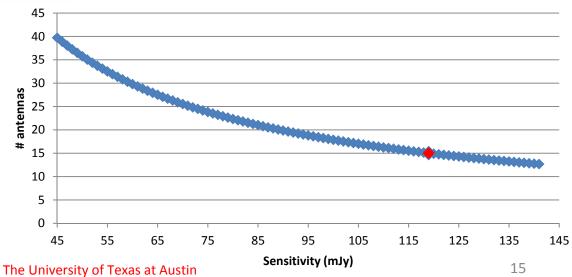
 Image and track solar disturbances with spatial resolution

Science Traceability



XSOLARA									
Exploration Priorities			Science Objectives	Science Investigations	Specification	Parameter Criteria			
Decadal Survey	Goal I:	Science Goal 1c: Search for and exploit extrasolar planet		Observe the sky below Earth's ionosphere cutoff freq.	Frequency	0.1-10 MHz			
					Instantaneous aperture plane	91			
					Bandwidth	1 MHz			
				Use Aperture Synthesis techniques	Sensitivity	120 mJy			
	Goal II:	Science Goal 2c: Characterize the structure of extrasolar planets			Number of Antennas	14			
					Relative time Knowledge	500 nanosecond			
					Relative Position Knowledge	30 m			

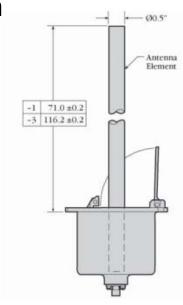
Sensitivity vs. # Antennas



Bare minimum number of antennas needed for a synthesis array. Can get 80% of the possible phase data and 78% of the amplitude data.

- 180 days of mission, 10 antennas
 - 125 mJy
- 180 days of mission, 14 antennas
 - 120 mJy
- 365 days of mission, 10 antennas
 - 90 mJy
- 365 days of mission, 40 antennas
 - 24 mJy

6 Month Mission



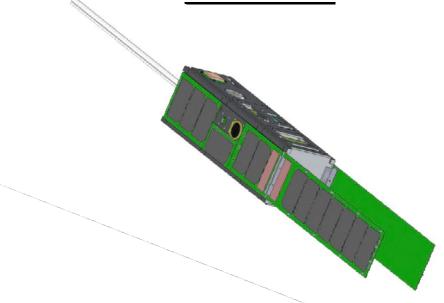
Science Instrument

- Simple dipole antenna
- "STEM" technology
 - Storable Tubular
 Extendable Member
 - Manufactured in beryllium copper
 - 11 meter in length
 - Flight heritage:
 - Voyager
 - Hubble
 - Many more

- Modified MF/HF receiver
 - Capable of frequency range 0.1-10 MHz
 - Proven technology

Mission Design

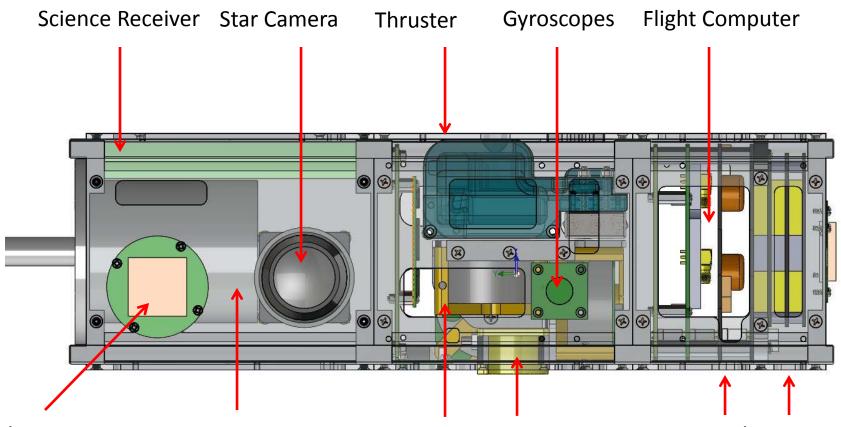
Mothership/CubeSat Platform



Mothership

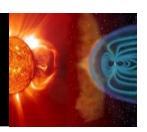
Modified ESPA ring


3U CubeSat

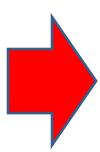


- CubeSats
 - -34x10x10 cm
 - 4 kg
 - Low-cost
 - Student built

CubeSat Components



Patch Antenna Science Antenna Reaction Wheels Sun Sensors Power Board Battery Board



Orbit design

Criteria

- Minimize terrestrial radio interference
 - Heavy use of the radio spectrum in the relevant frequency (AM radio band)
- Avoid "break-out" of terrestrial signals
- Largest accessible fraction of sky at any given time
- Stable orbit to minimize station keeping

Distant Retrograde
Orbit (DRO) at 1.2
million km from
Earth

Trajectory

Educational Use Only

Final Orbit:

- 1.2 x 1.0 million km
- Ecliptic Inclination :3.0 deg
- Ecliptic Node (initial):90 deg to sun
- Period : 94 days

Earth - GEO

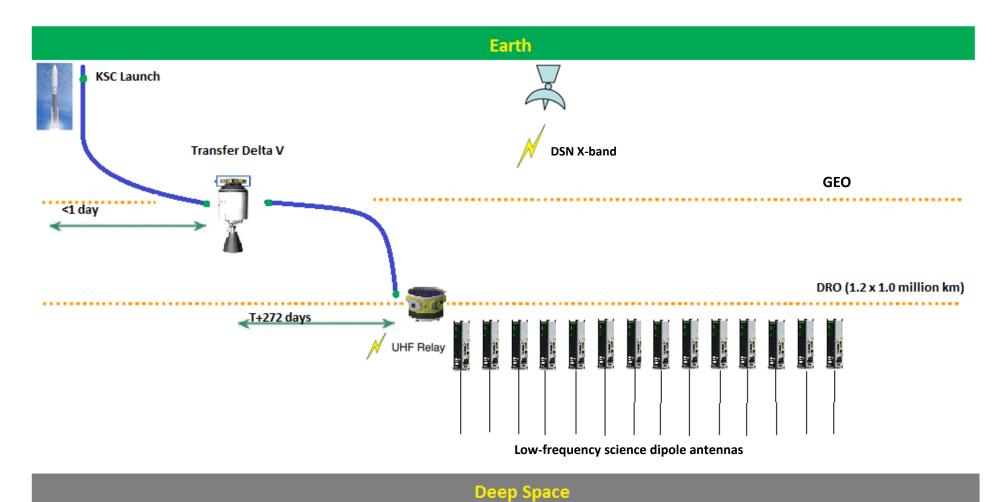
Secondary payload

GEO - DRO

• 1200 m/s ΔV from Mothership

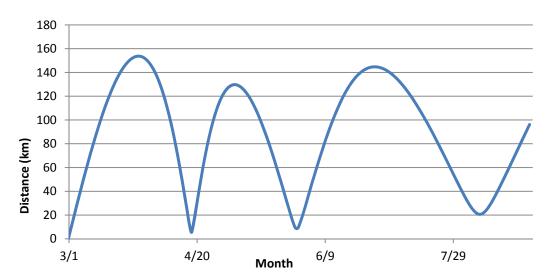
DRO insertion

• 137 m/s ΔV from Mothership


CubeSats Deployed

Only 7 m/s ΔV for station keeping

Mission Design



CubeSat Deployment/Configuration

- No particular configuration will be followed
- CubeSat deployment timing
 - $t = t_o + 10 \text{ minutes}$
- CubeSat deployment ΔV
 - $0.1 \, \text{m/s}$

- Need to have position knowledge of each CubeSat
- No need to control the position of each CubeSat
- No need to point the science antenna
- Can use the drift rate in our advantage to change angular resolution over time

Current Design Status

- Design Maturity
 - Currently XSOLARA is a feasibility study
 - Components and data shown are to demonstrate the design is reasonable and achievable
- Technical Margins
 - Resource margins meet JPL design principles for Concept Review
 - Resource margins will be continuously monitored
- Cost
 - University and hardware costs will be shown

XSOLARA Subsystems Overview

Mothership

Propulsion

Communication

ADCS

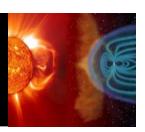
Power

C&DH

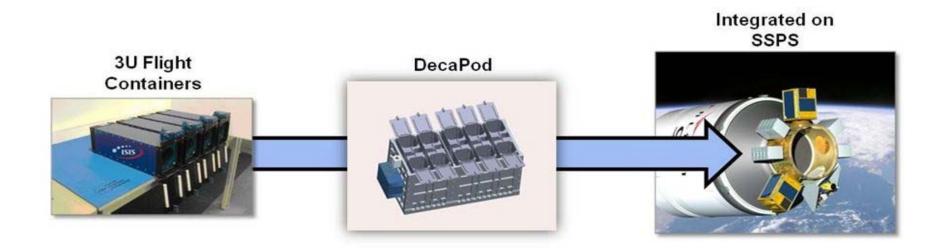
Structure

Mothership

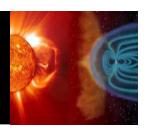
Hardware


Mothership: SHERPA 2200

- Gross Mass: 2000 kg
- Capable of 2200 m/s of ΔV
- Size/Volume: Standard ESPA ring (1575 mm) interface
- Currently rated for Cis-Lunar environments, can be modified for DRO
- All subsystems are compatible with XSOLARA's mission with slight modifications in the communication and attitude control subsystems



Hardware

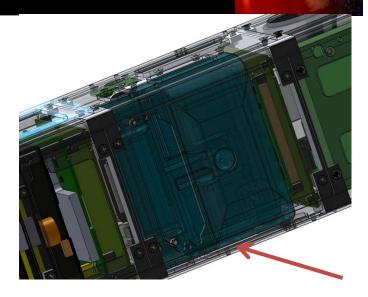

Andrews CubeSat Launcher

- 2 launchers attach directly to SHERPA
- Each launcher holds 10 3U CubeSats
- Uses the ISIS-POD launcher
- Contains a sequencer that automatically dispenses the CubeSats in a collision-free environment
- Capable of recording data from and photographing separation

Launch Services

- Launch opportunities:
 - Falcon 9
 - Falcon Heavy
 - Delta IV
 - Atlas V
 - Minotaur IV SLV
- Andrews Space will be providing the launch vehicle, SHERPA, and CubeSat launcher for XSOLARA
- First flight scheduled for 2014

Propulsion



Baseline

- CubeSat propulsion system:
 - Cold Gas system
 - Must provide at least 7 m/s ΔV
- CubeSat propulsion system can hold up to 0.09 kg of propellant providing up to 15 m/s ΔV

CubeSat Cold Gas Mass							
Mass of 1 CubeSat (kg)	4.00	4.00					
ΔV (m/s)	15.20	7.00					
ISP (s)	70	70					
Propellant mass (kg)	0.09	0.04					

 CubeSat can provide more than double XSOLARA's station keeping needs

Thruster in CubeSat CAD model

Hardware

CubeSat propulsion system:

- Austin Satellite Design
- R-236fa cold gas refrigerant
- 1 thruster per CubeSat for station keeping

Complete module

 Tanks and plumbing built into one piece made from solid stereolithography plastic

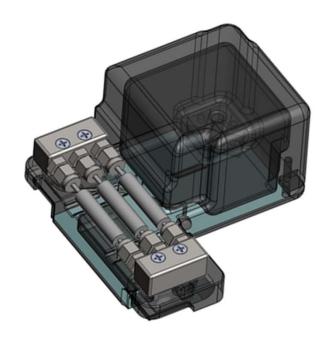


Photo: Austin Satellite Design

Communication

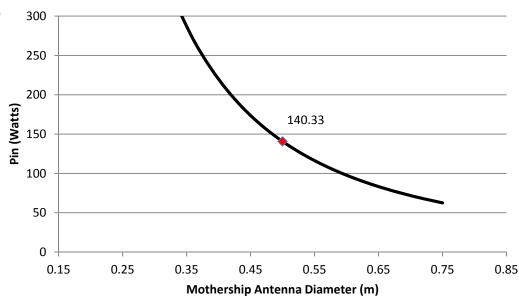
Constraints

Mothership

- Power is limited by SHERPA's capabilities
 - 150 W allotted to the Communication Subsystem
 - 140 W only includes transmit power
 - Maximize bit rate within this limitation
- Minimum downlink data rate is determined by Nyquist Sampling Rate

CubeSats

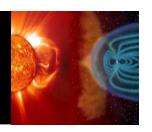
- Data rate is limited by the Mothership's data rate
- Determined by modulation and Eb/No requirements
- 0.1 to 10 MHz frequency range
 - Determines minimum bit rate via Nyquist Sampling
 - Limits hardware possibilities and selection
- Transmit power will be rounded up to 0.5 W to account for any errors that may be experienced throughout the mission


Baseline

Mothership

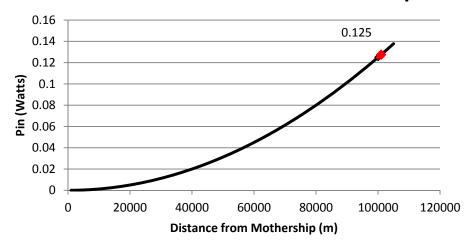
- The Mothership will have nearly constant uplink and downlink communication with the Deep Space Network's 34m antennas via X Band frequency
- Equipped with a 0.5m High Gain Antenna (~30dB), multiple receivers and patch antennas
- Receivers will be unique to XSOLARA's requirements
- SHERPA shall allocate ~150 W to the communication subsystem
 - Approximately 140 Watts will be used in transmit/receiving power

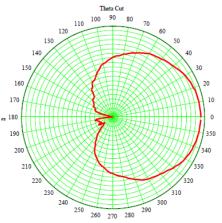
Mothership Antenna Diameter vs Power


Downlink-Mothership

- 37.7 Mbps (Maximum performance)
 - Minimum set by Nyquist Sampling
 - Bit Rate=N*2*df*b
 - Constrained by available power
- PM-BPSK Modulation
 - Binary Phase Shift Keying
 - Converts to binary: robust and compact
- Transmit Power: 140.33 W
 - Worst Case Scenario
 - Highest Performance

Mothership to Earth						
Downlink	Linear	dB				
η-comm	0.3					
η-mother	0.6					
η-DSN	0.7					
D-DSN	34					
D-mother	0.5					
Frequency	8.40E+09					
Speed of Light	2.98E+08					
λ	0.04					
Distance	1.20E+09					
Gtrans	1176.30	30.71				
Grec	6.35E+06	68.02				
Ls	5.53E-24					
La	0.45	-3.5				
LΘ	1	0				
k	1.38E-23					
Ts	100					
В	3.77E+07					
I	2.00	3				
Eb/No req	1.82	2.6				
Link Margin	3.16	5				
Eb/No des	11.48	10.6				
Pin	107.95					
Margin	32.38					
Pin Total	140.33					
Prec	5.98E-13					





CubeSats

- Power was calculated at maximum distance from Mothership
- Equipped with a Low Gain antenna (~6dB), patch antennas, receivers, and a science antenna

CubeSat's Distance from Mothership

Patch Antenna Coverage

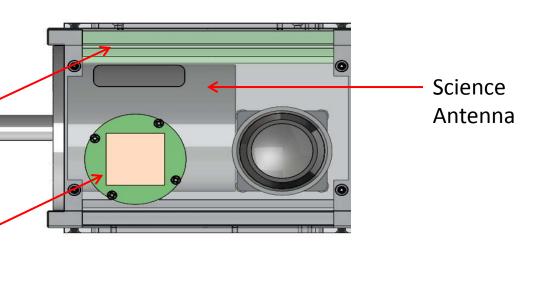
Downlink-CubeSat

- 2.67 Mbps (Maximum Performance)
 - Minimum set by Nyquist Sampling
 - Bit Rate=N*2*df*b
 - Constrained byMothership's data rate
- Transmit Power: 0.125 W
 - Round to 0.5 W
 - Worst Case Scenario
 - Highest Performance

CubeSat to Mothership				
Downlink	Linear	dB		
η-comm	0.3			
η-cube	0.6			
η-mother	0.6			
D-mother	0.5			
D-cube	0.50			
Frequency	5.00E+08			
Speed of Light	2.98E+08			
λ	0.60			
Distance	1.00E+05			
Gtrans	3.98	6		
Grec	1.64	2.15		
Ls	2.25E-13			
La	1	0		
LO	1	0		
k	1.38E-23			
Ts	100			
В	2.67E+06			
1	2.00	3		
Eb/No req	1.82 2.6			
Link Margin	3.16			
Eb/No des	11.48	10.6		
Pin	0.096			
Margin	0.029			
Pin Total	0.125			
Prec	4.2372E-14			

Hardware

Mothership

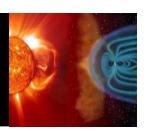

- High Gain Antenna
 - $-0.5 \, \mathrm{m}$
 - Gain on ~30 dB
 - Efficiency of 60%
- UHF Receiver
- Patch Antennas
- X-Band Receiver

 Science Receiver

Patch Antenna

CubeSat

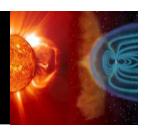
- 3 Patch Antennas
- 1 Science Dipole Antenna
 - STEM JIB Antenna (11m)
- 1 MF/HF Receiver
- UHF Receiver



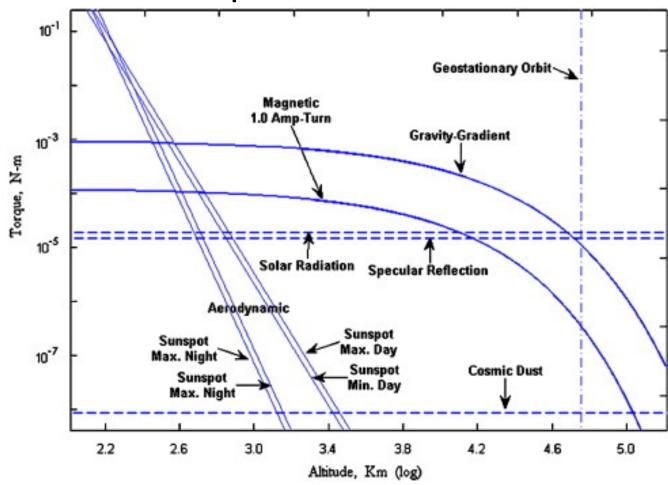
ADCS

Constraints

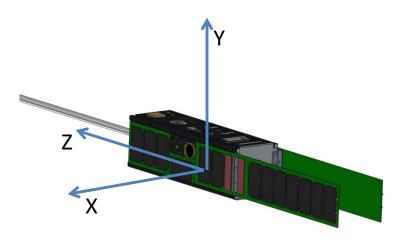
CubeSat

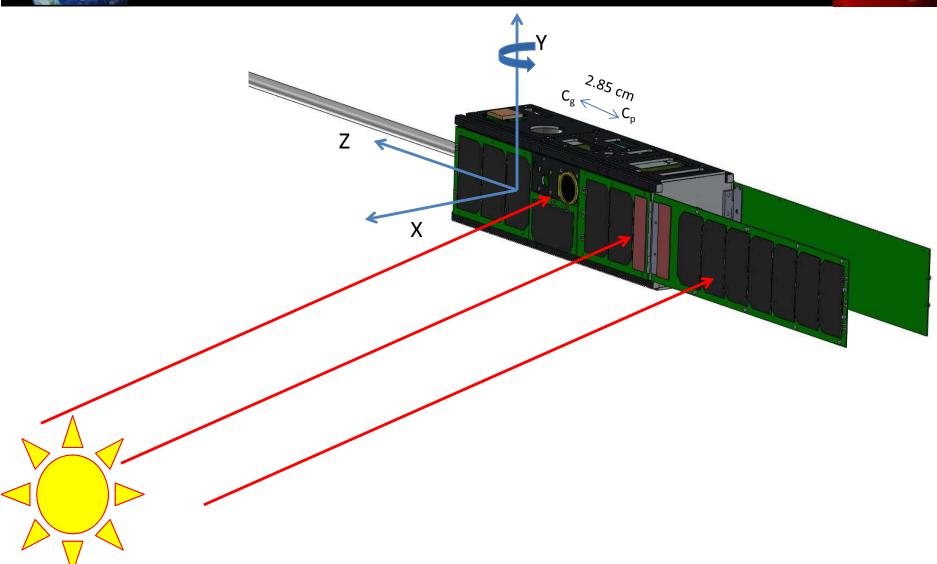

- Power Constraint:
 - Keep solar panels facing toward the Sun at ±5.5°
- Volume/ Mass Constraint:
 - 1U dedicated to ADC
- Propulsion Constraint:
 - The CubeSats have a limited amount of propellant onboard

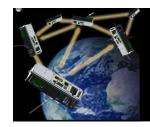
Mothership

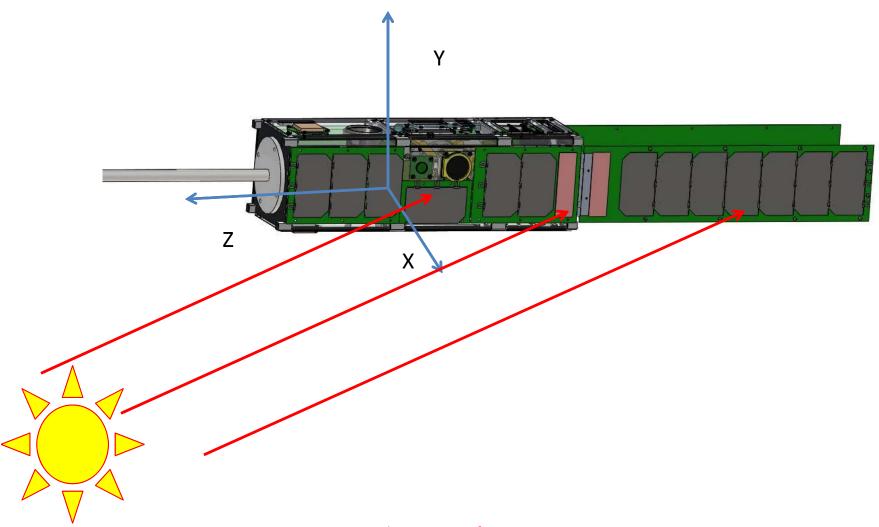

- Pointing Constraint:
 - The Mothership's HGA must be pointed at Earth at ±1.75° at all times

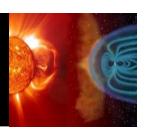
Subsystem	Instrument	Control Requirement	Determination Capability
Mothership COM	HGA	±1.75 °	Not Given
CubeSat EPS	Solar Array	±5.5°	±0.1°

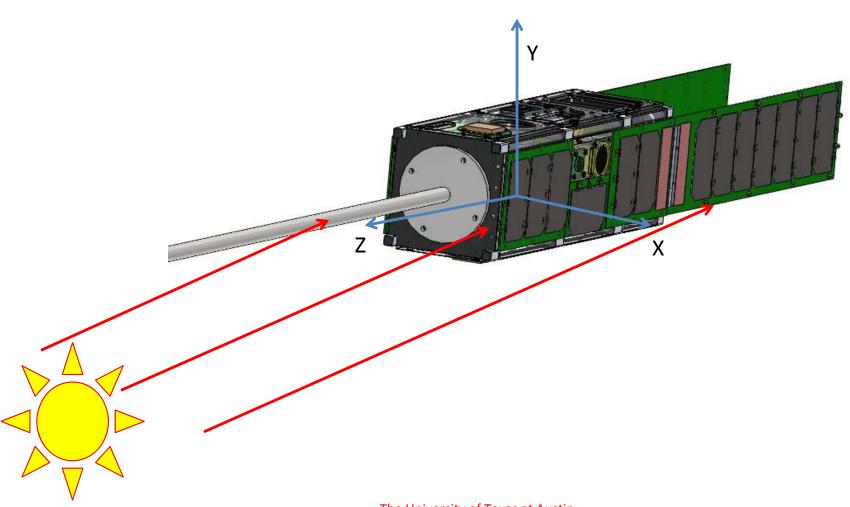

Disturbance Torques

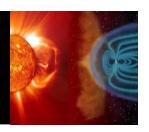


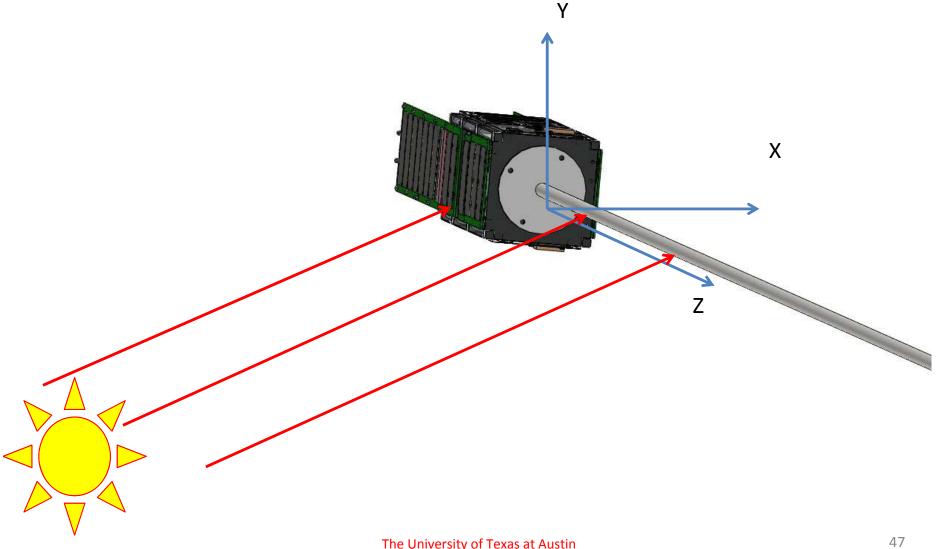

Analysis of Reaction Wheels for a 3U CubeSat			
Period of DRO (Days)	94		
Distance Between Cg and Cp (m)	0.029		
Solar Radiation Pressure at DRO – Tps (N*m)	7.12E-9		
Sinclair Reaction Wheel Capability (Nms)	7.00E-3		
Momentum Storage in Momentum Wheels (Nms)	5.79E-2		
Days Between Unloading (days)	8.27		

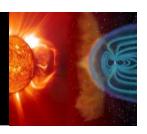


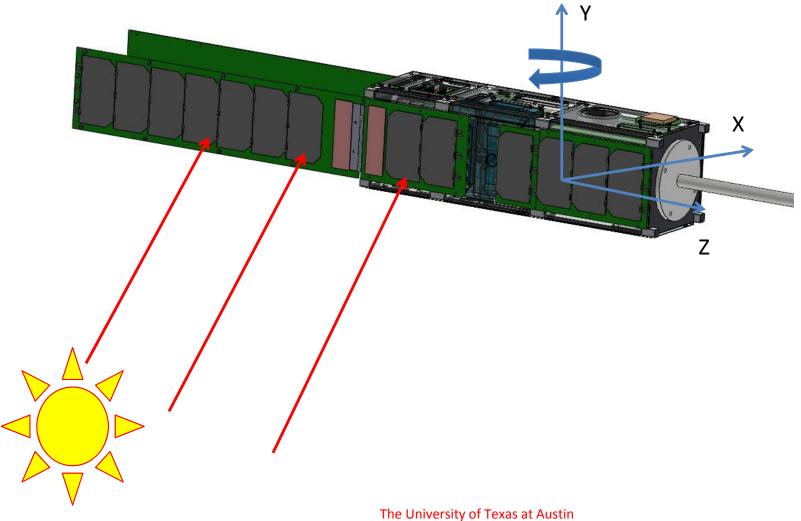


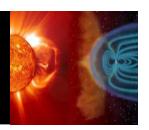


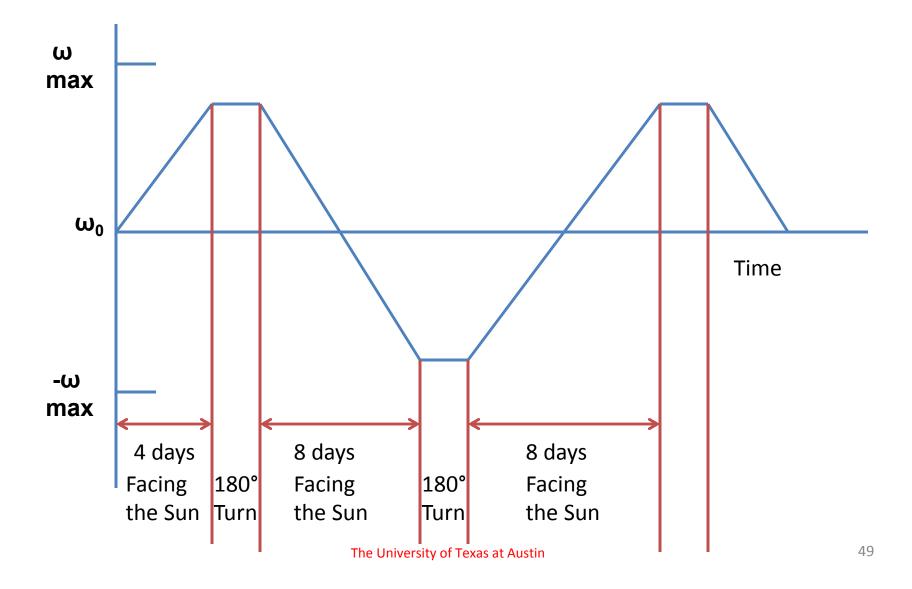


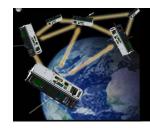






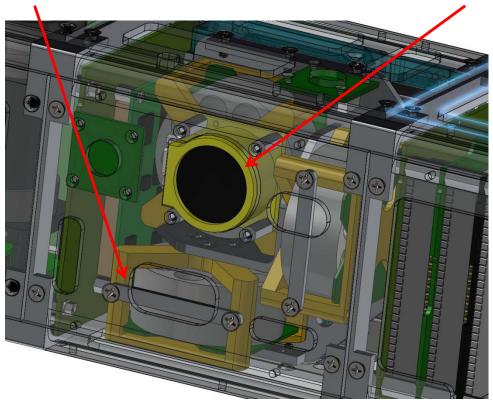


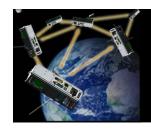




How to Maintain Max Moment of Inertia:

Top View	Side View
	Max
Front View	Intermediate


Hardware

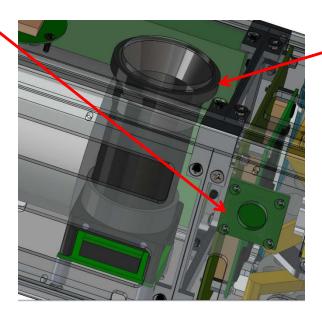


Reaction Wheels: Sinclair Interplanetary Sun Sensor: Space and Ground Systems UK

Hardware

3-axis Accelerometer: Analog Devices

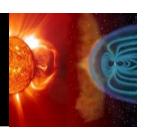
3-axis Gyroscope: Honeywell



Star Camera: Computer-Matrix Vision,

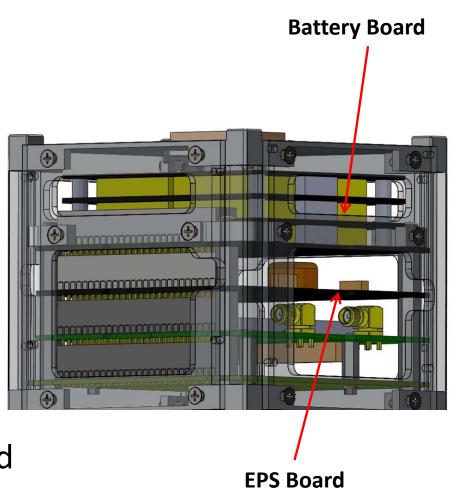
Lens-Schneider Optics

Designed By: Chris McBryde



Power

Constraints



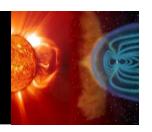

CubeSat

- Provide power to all subsystems
- Volume/Mass:
 - Stay under a 1U in size
 - Minimize mass
- Cost:
 - Find components that are capable of the requirement but minimize cost

Mothership

Use the SHERPA as designed

CubeSat Power Budget


Maximum Case

Subsystem	Power (W)	30 % Contingency	Total Power (W)
Attitude Determination & Control	3.04W	0.91	3.95 W
Command & Data Handling	0.97 W	0.29	1.26 W
Communication	3.50 W	1.05	4.55 W
Power	0.01 W	0.00	0.01 W
Propulsion	0.80 W	0.24	1.04 W
Total Power			10.81 W

Other Power Modes: Slewing, Uplink, Downlink, and Safe

CubeSat Batteries

On Board Batteries

- Provide the spacecraft with power in the case of:
 - Eclipse
 - $-\beta > 5.5^{\circ}$

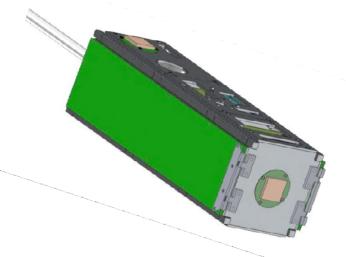
Lithium-Polymer Batteries (30 W-hr)

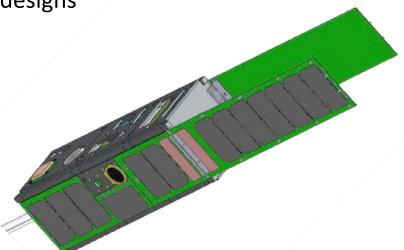
- 3.3V and 5V regulated buses
- Built in inhibits to protect from shorts

Electrical Power System

Built in inhibits

Slewing Power Mode			
Subsystem	Total Power (W)		
Attitude Determination & Control	3.00 W		
Command & Data Handling	1.26 W		
Communication	0.00 W		
Power	0.01 W		
Propulsion	0.00 W		
Total Power	4.27 W		


CubeSat Solar Panel Design



Deployable Solar Panels

- Need a maximum of 10.81 W for all subsystems
- Non-deployable solar panels allow for up to 5.2 W
- Allows for up to 11.27 W when deployed
- 7 solar panels built with Ultra Triple Junction CICs solar cells on each deployable section
- Thermal knife used for deployment after separation from ISIS-Pod

Based on Clyde Space and Pumpkin designs

C&DH

Constraints

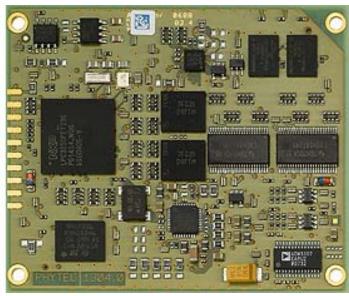
Mothership

- Receive and handle commands from the ground station
- Transfer science data from the CubeSats to the ground station
- Interpret ranging data

CubeSat

- Receive and execute commands from Mothership
- Perform ranging functions
- Handle science data to be sent to the Mothership

Hardware

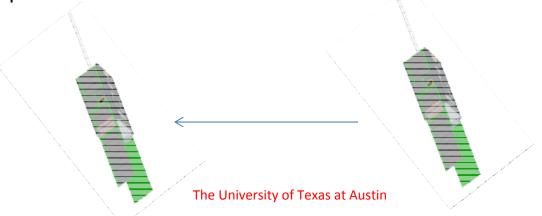


<u>CubeSat system</u>

- phyCore-LPC3250
 - 208 MHz CPU
 - 256 KB SRAM on-chip
 - 128 MB NAND Flash
 - Vector Floating Point (VFP)
 - Built on Linux OS framework
 - Coding will be in C ++

Oscillator:

- Chip Scale Atomic Clock (CSAC) with 100 nanosecond accuracy
- On board every CubeSat and Mothership
- Synchronized upon release from the Mothership



CubeSat

- Each CubeSat will transmit a timestamp-encoded signal
- The other CubeSats will listen for the signal and timestamp this upon receipt
 - The CubeSat will determine the Δt between the timestamps
- After obtaining 13 ranges, ranging data will be transmitted to the Mothership

Mothership

- The data sets will then be interpolated to determine:
 - CubeSat geometry
 - Instantaneous position, velocity, and acceleration
- With this knowledge, the science objective can be met and station keeping may be performed

Time Division Multiple Access (TDMA)

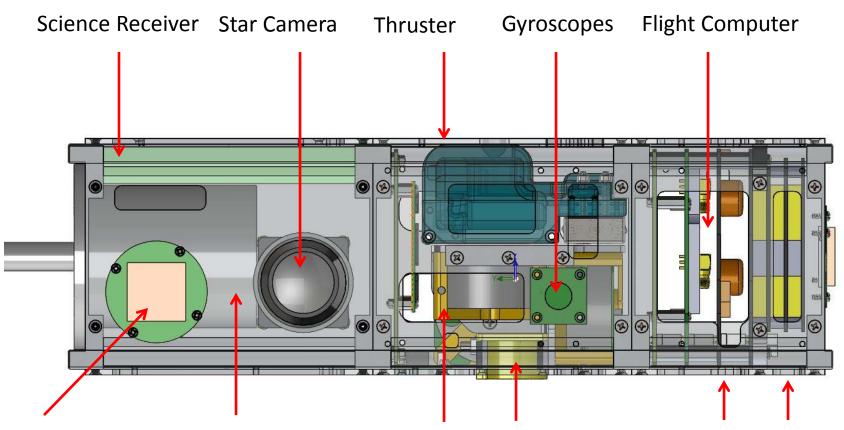
- Each satellite will transmit in sequence while the other 13 listen
- This technique requires minimal power to run and allows ranging on one frequency

<u>Sequence</u>

- CubeSat will transmit for 30 seconds
- Next 30 seconds "silent"

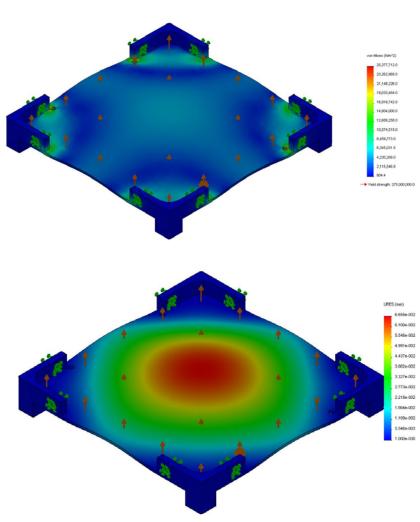
Total rotation

- Lasts 14 minutes
- Each CubeSat only broadcasting for 1/28th of total time



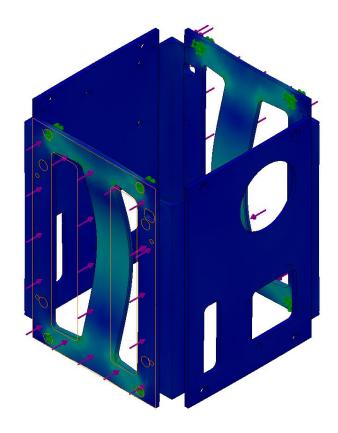
Structure

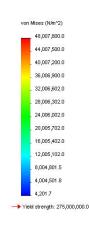
CubeSat Components


Patch Antenna Science Antenna Reaction Wheels Sun Sensors Power Board Battery Board

Structural Analysis

- Analyzed stresses and displacements of CubeSat shell components (FEA)
- FOS > 4 for all pressurized containers
- Estimated Launch Loads
 - Lateral load of 11 g's
 - Axial load of 6 g's





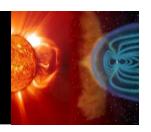
Structural Analysis

- Weakest Piece:
 - Payload Shell on ± X face
- FOS: 5
- Solutions:
 - Smaller cutouts
 - Thicker walls
 - Reinforce metal strip in middle



Management and Cost

Timeline


Phase	Duration (months)
Α	4
В	11
С	9
D	6

FY15	FY16		FY17	FY18			FY19	FY20	FY21
		А	В	С	ſ	0			

30 months formulation and Implementation

Costing Tool

- No cost model will accurately work for CubeSats
- Cost analysis is based on current CubeSat programs in different universities

Small Satellite Cost Model (SSCM)

 Used to compare the integration, testing, and program costs

<u>Quotes</u>

"Quotes" for material components

University Grassroots

Student labor cost

Hardware Cost (CubeSat)

Hardware Cost(CubeSat)			
Component	Cost		
Propulsion	\$19,500		
ADC	\$75,660		
Communications	\$13,000		
Power	\$35,600		
Structure/Thermal	\$12,000		
Payload	\$7,000		
Total (per CubeSat)	\$163,000		
Total (14 CubeSat)	\$2.27 M		

All costs include a 30% contingency

Integration, Assembly, Test Cost(CubeSat)

- Assume two universities will be involved
 - Each university will be in charge of 7 CubeSats

Labor Cost					
	Approximate Number	Annual Cost for Single Student	Total Cost Per Year		
PhD	5	\$55k	\$275k		
Masters	6	\$38k	\$228k		
Undergraduate	60	\$0	\$0k		
Total cost per year per University			\$503k		
Total cost per University	2.5 work years to Integrate, assemble and test		\$1.25 M		
Total cost	2 universities involved(30% Contin)		\$3.25 M		

Mothership/Program Level

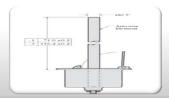
Launch Vehicle/Mothership		
Component	Cost	
Launch Vehicle to GEO		
SHERPA to DRO		
SHERPA		
IA&T		
Program Level		
Ground Support		
Total	\$38 M	

Program Level Cost			
Component	Cost		
Systems Engineering			
Program Management			
Reliability			
Planning			
Requirements flow down			
Quality assurance			
Project Control			
Total	\$0.5 M		



Total Cost

Component	Cost
CubeSat Hardware	\$2.27 M
IA&T	\$3.25M
Program Level	\$0.5 M
Launch Vehicle & SHERPA	\$38.0 M
Total	\$44.02 M



XSOLARA Conclusion

Overview of XSOLARA subsystems

Payload

• The only payload for XSOLARA is its 11 meter dipole antenna . Simple, reliable and proven technology

Communication

- All the data can be sent back to Earth with ample link margin
- High bandwidth will ensure data quality

Power

• Even in the worst case scenario, the system does not exceed available power.

ADCS

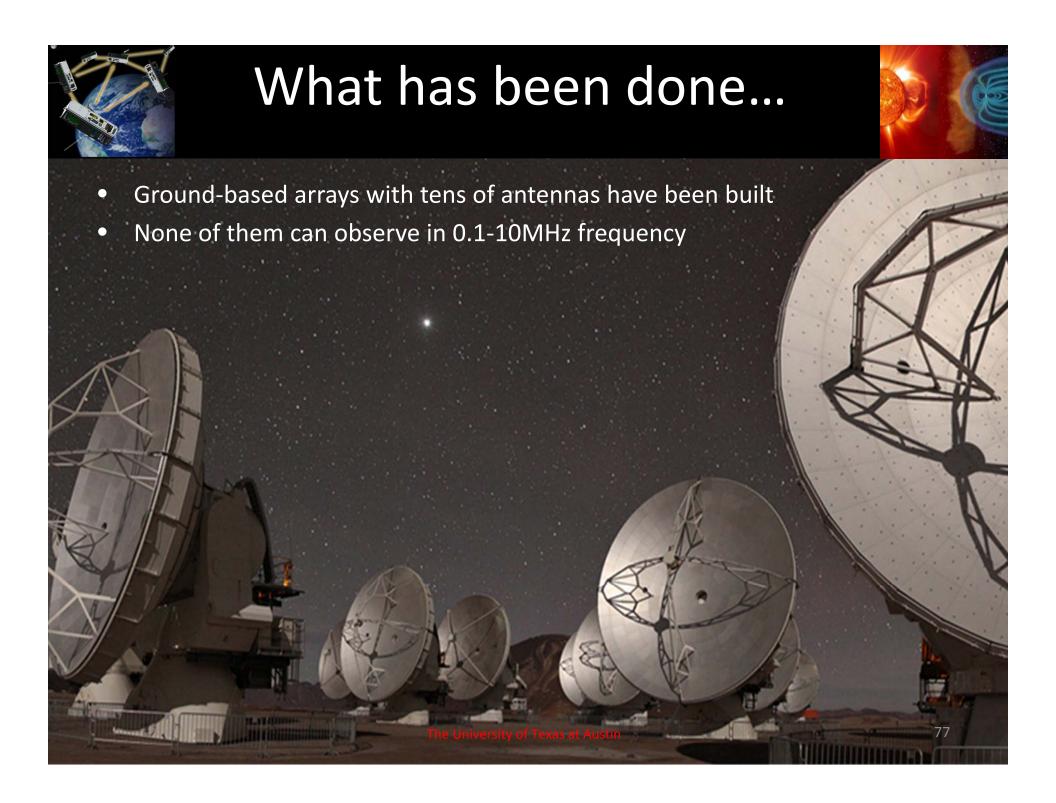
No pointing requirement for the science payload but XSOLARA's ADCS can control
the CubeSat to a very good accuracy

Propulsion

- Propulsion system can provide up to 15 m/s for each CubeSat.
- Only 7 m/s is needed for the entire mission duration

Structures

- CubeSat structure is well known and proven
- CubeSat can stand all the stresses and vibrations throughout its lifetime

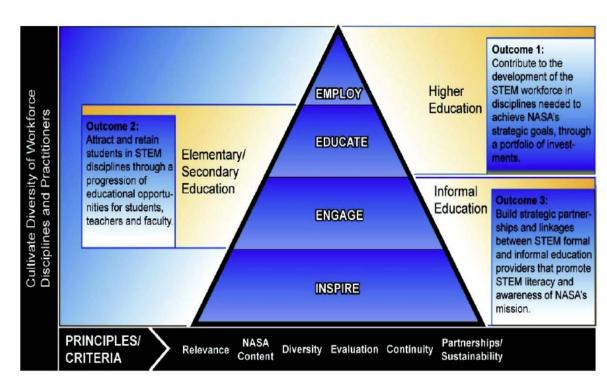


Mass Budget-System Summery

Mass Budget		
Component	Mass	
Payload	300 g	
Propulsion	379.1 g	
ADC	611.6 g	
Communications	465.3 g	
Power	83.4 g	
Structure	676.5 g	
Thermal	165 g	
Spacecraft Dry Mass	3542.2 g	
Propellant	147.7 g	
Loaded Mass	3689.6 g	
Margin	310.4 g	

XSOLARA capability			
Component	Required	Capability	
No. of Satellites	10	14	
Pointing (deg)	5.5	0.1	
Propellant (kg)	0.04	0.09	
Data rate (Mbps)	28	37.37	
Power (W)	10.81	11.27	
Mass (kg)	3.698	4	

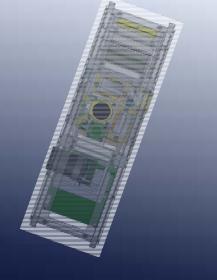
What we can contribute...


- XSOLARA can provide science not obtainable from Earth Observing platforms
- Observation in low frequency with a sensitivity enough to detect exoplanets
- Path way to larger scale missions to follow up
- Create a whole new category of missions with CubeSats

Education Public Outreach

- Top universities will be designing and building XSOLARA
- INSPIRE: XSOLARA will inspire
 K-12 students to do STEM
- **ENGAGE:** Involved universities will commit to engage K-12 students by having tours, conference, etc.
- EDUCATE: College students will be directly involved
- EMPLOY: Involved students are best candidates for NASA employment

XSOLARA Conclusion


Exoplanets are among the top priorities for NASA

Valuable Science

XSOLARA will have direct impact to many college students and indirect impact to thousands of k-12 students

High EPO Value

CubeSats are simple, cheap and low risk

Low Risk, Simple

XSOLARA will cost only 43 million dollars

Low Cost

Backup slides

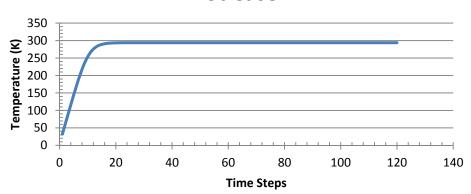
Thermal

- Operating Temp (0-45°C)
- Star tracker defines boundaries

Components	Coldest Temperature (°C)	Hottest Temperature (°C)
Star Camera	0	45
Reaction Wheels	-40	70
Gyros	-45	85
LPC 3250	-40	85
Sun Sensors	-25	50
Battery Board + EPS	-40	85

Single Node Analysis

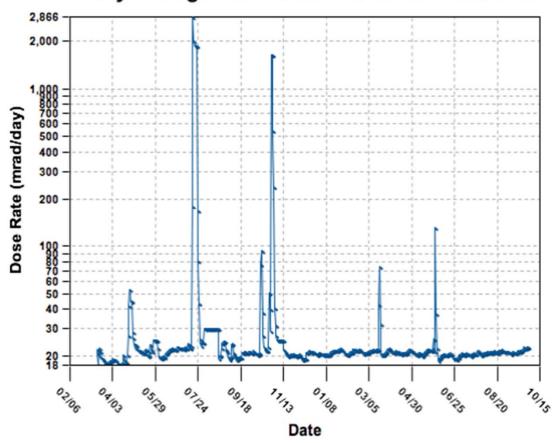
- Spreadsheet Calculation
- Assumptions:
 - Spherical Satellite
 - No Conduction or Internal Radiation
 - Outer Planet Albedo/IR
 - Only Solar Cells
- Average Spacecraft Temperature:
 - 293 K


External Constants (W/m²)		
Solar Heat Flux	1345	
Albedo	387	
Planetary IR	235	

Thermal Environment

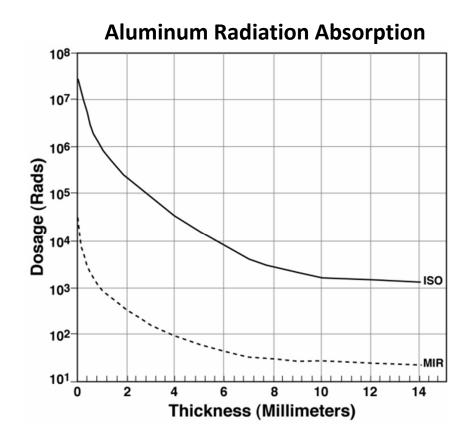
Hot Case

Cold Case 250 200 150 150 0 0 20 40 60 80 100 120 140 Time Steps


- Temperature Gradient
 - Hot Case: 295 K
 - Cold Case: 197 K
- Typical Range for Satellite is 125 K (~30% Margin)
- Multi-Layer Insulation (MLI) – Kapton Tape to be used

Radiation Mitigation

MARIE Daily Average Dose Rates: 03/13/2002 - 09/30/2003

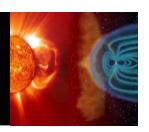

- Assume 6 month mission life in deep space
- Including Solar Events lasting 3 days each
 - Total dosageresults in 17-22rads over 6 monthperiod



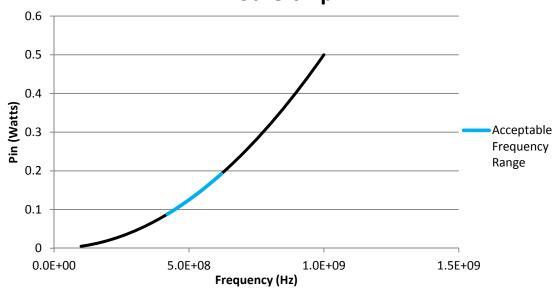
Radiation Mitigation

- 2.5mm CubeSat wall thickness
- ~110,000 rads max dosage (for glass instruments)
- Well below dangerous levels

Radiation Mitigation


MLI – Kapton Tape

	Kapton Tape on Aluminum Shell	Polyethylene/RXF 1
Description	Aluminum shell of spacecraft coated with reflective Kapton Tape	Rigid plastic material derived from polyethylene
Cost	Tape: \$1.61 per sq ft	Unknown since product still under development
	Sheet: \$9.00 per sq ft	
Pros	Cheaper	Light, flexible, durable
	Tested through heritage	Superior radiation shielding (could potentially protect humans)
	Feasible/Sturdy	
Cons	Heavy	Projected to be costly
	Not good at dealing with micrometeorite impacts	Sensitive to thermal activity
	Mediocre radiation shielding (needs to be coupled with Rad-Hard equipment)	No heritage


Baseline

CubeSat-Mothership Relay

- 14 CubeSats will communicate to the Mothership via UHF relay
- CubeSat to Mothership frequency will be within the authorized space to space link
 - 0.4 GHz to 0.6 GHz
 - XSOLARA will utilize 0.5
 GHz until authorized
 frequency is specified

Frequency Range between CubeSat and Mothership

