
Agile Verification

Gerard J. Holzmann

gh@jpl.nasa.gov

how we design & test software today
(a simplification)

2

require design code fly test

the main quality “gates”
gaining in strength and precision as we move to the left

human-readable artifacts machine-readable artifacts

the standard formal methods pitch

• model-based design techniques can introduce

machine readable artifacts earlier in the life-cycle

– which enable more thorough tool-based analysis

techniques for requirements & design

• for instance, logic model checkers can then be used to

verify requirements against high-level design models

3

require design code fly test

human-readable artifacts machine-readable artifacts

another look at testing

• in test-based verification, we tend to treat all code alike
– but there’s a difference between:

• deterministic (e.g., math) routines and

• non-deterministic (e.g., reactive) code

4

Current

Method
Better Best

math routines

(deterministic)

sampling-

based

testing

 randomized

(fuzz) testing

+

static analysis

Pre- & Post-

conditions, loop

invariants,

theorem proving

? reactive code

(concurrent)

logic model

checking

these methods are very useful

but none are “logically complete”

and some are not “logically sound”

example of an agile verification process

5

call processing

kernel in C

error traces

mechanically

extracted

verification model

time to find error traces:

 11 in 1 second

 38 in 7 seconds

 70 in 600 seconds

32-core

desktop system with

64 GB of memory

running Ubuntu Linux

200 feature

requirements

formalized

in logic

L
u
c
e
n
t

T
e

c
h
n
o
lo

g
ie

s

P
a
th

s
ta

r®
 a

c
c
e
s
s
 s

e
rv

e
r

code

bugs

<10 sec

synopsis

6

Agile Verification techniques can fill a gap

we have in developing reliable mission-critical

software

With the large multi-core systems that are now

generally available, this approach has become

technically feasible

Current

Method
Better Best

math routines

(deterministic

)

sampling-

based

testing

 randomized

(fuzz) testing

+

static analysis

Pre- & Post-

conditions, loop

invariants,

theorem proving

? reactive code

(concurrent)

logic model

checking

